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Abstract

Order-of-magnitude-tighter bound
on the electron electric dipole moment

Zack Lasner

2019

The electron’s electric dipole moment (eEDM) is a time-reversal- (T -) violating interac-

tion that is generically predicted to have a magnitude near or above the bounds of current

experimental sensitivity in extensions to the Standard Model. We have completed an im-

proved measurement of the electron’s electric dipole moment with an order-of-magnitude

greater sensitivity than the previous best measurement. The result is consistent with no

interaction, |de| < 1.1 × 10−29 e · cm. This upper bound is a factor of 8.6 smaller than

the previous bound and correspondingly probes for new particles with masses at ∼ 3 − 30

TeV, which is ≈ 3 times higher than previously explored in eEDM experiments. In this

work, we describe the second-generation ACME experiment, models for and suppression of

systematic errors, sources of phase noise, and preliminary work toward a third generation

of the ACME apparatus.
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Chapter 1

Introduction

That all the Interplay is one flea of assertion

on a wolf of naught. . .

et’Ada, Eight Aedra, Eat the Dreamer

Many foundational elements of the Standard Model theory of particle physics, including

the seminal Higgs mechanism papers of 1964 [1–3], the development of electroweak gauge

symmetry in the 1960’s [4, 5], and the independent discoveries of asymptotic freedom in 1973

[6, 7], were developed over forty years ago. By the end of that period, the first collider using

two circulating hadron beams was only a few years old and could achieve beam energies of no

more than 15 GeV. Yet this already represented a major advance over previous accelerators,

which used fixed targets and therefore had far lower center-of-mass collision energies [8].

With further advances in high-energy physics techniques made throughout the subsequent

years, the Standard Model came under an onslaught of rigorous tests and was validated

in every case. Major experimental milestones include the discovery of the charm quark in

1974 [9, 10], the tau lepton in 1975 [11], the bottom quark in 1977 [12], gluons in 1979

[13], the W and Z bosons in 1983 [14, 15], the top quark in 1995 [16, 17], the tau neutrino

in 2001 [18], and the Higgs boson in 2012 [19]. To date, no laboratory measurement has

stood in definitive contradiction with the Standard Model, despite four decades of technical

developments including probes of energy scales three orders of magnitude higher than were

possible when the Standard Model was being completed.

However, not all observations are laboratory observations, and cosmological measure-
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ments have conclusively shown that the Standard Model, together with general relativity,

provides an incomplete description of the natural world [20]. Many anomalies—appearing,

for example, in galactic structure and the cosmic microwave background–can be accounted

for by positing the existence of “dark matter” whose microscopic nature remains largely

unspecified.

Since the Standard Model describes “low-energy” particles (which can be readily pro-

duced) and their “strong” non-gravitational couplings, new physics could appear in the form

of massive particles (m & 100 GeV), weakly coupled particles (e.g., with coupling constants

at inverse energy scales g ≪ G
1/2
F ∼ 10 GeV−1), or modifications to general relativity. As

merely representative examples of each case, one may consider supersymmetric extensions to

the Standard Model in which new particle masses are expected up to several TeV [21], light

QCD axions (masses m ∼ meV, corresponding to coupling constants gaγ ∼ 10−13 GeV−1)

[22], and modified Newtonian dynamics in which gravitational forces are reduced in the

low-acceleration limit [23].

In the present work, we are primarily interested in the possibility of high-energy parti-

cles that interact, perhaps indirectly, with the electron and thereby modify its properties.

Electrons are, of course, utterly abundant. Furthermore, laser technology allows us to ma-

nipulate electronic states in atoms and molecules with extreme precision. As we will see,

these two features–large available numbers and precise control–make the electron a powerful

window into the physics of other, higher-energy particles.

In particular, we have made a measurement of the electron’s electric dipole moment

(eEDM), which probes physics at the ∼ 10 TeV energy scale. This chapter will give an

introduction to EDM interactions and their connection with theories beyond the Standard

Model (BSM), followed by a historical overview of EDM measurements and the measurement

technique used by the Advanced Cold Molecule Electron EDM (ACME) collaboration.

1.1 Electric dipole moments of fundamental particles

An electric dipole moment d is a property of a particle defined by the interaction Hamil-

tonian Hd = −~d · ~E , where ~E is an electric field. In classical electromagnetic theory, such
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an interaction arises between a spatial charge distribution and an external electric field,

such that the dipole moment ~d lies along a spatial axis of charge separation. For example,

a charge distribution consisting of two point charges, +q and −q, is associated with an

electric dipole moment that points from the negative to the positive charge. By contrast,

in a fundamental particle, there is no special polar vector (i.e., a vector that is odd under

parity) to define the axis of a dipole moment ~d. Therefore, a fundamental dipole moment

must lie along or against the particle’s spin (axial vector) axis, ~S. No fundamental particle

EDM has been observed to date.

Much like the electron’s magnetic moment, an eEDM would be an intrinsic property, and

should ultimately not be thought of in terms of a classical separated charge distribution.

To belabor this point, note that the magnetic moment interaction is Hµ = −~µ · ~B with

~µ ≡ −µBgs~s, where µB is the Bohr magneton, gs ≈ 2 is the electron g-factor, and ~s is the

spin of the electron. (Throughout this thesis, I will use natural units, ~ = 1.) In the language

of quantum field theory (QFT), the electron is an irreducible representation of the Lorentz

group and therefore has very particular properties under rotations, which are fully defined

by the spin vector ~s [24, Sec. 3.1]. If it were to have some independent vector intrinsically

associated with it (~µ✁✁‖~s), then it would cease to have the correct transformations, and this

is simply not allowed. By the same reasoning, we must also find ~de ∝ ~s, where ~de is the

electric dipole moment vector of the electron. We let Hde = −~de · ~E ≡ −2de~s · ~E so that

Hde = −de|E| when ~s ‖ ~E for a spin-1/2 particle.

The relationship ~de ∝ ~s is properly interpreted as an operator equation, but it can also

be instructive to demonstrate this relationship directly in the context of expectation values.

Recall the Wigner-Eckhart theorem, 〈j′,mj′ |T kq |j,mj〉 ∝ 〈j′,mj′ |k, q; j,mj〉, where T kq is

the q-component of a rank-k tensor in the spherical basis with q ∈ {k, k− 1, · · · ,−k}, while

|j,mj〉 is a state with total angular momentum j and projection along the z-axis of mj (and

likewise for |j′,mj′〉), and 〈j′,mj′ |k, q; j,mj〉 is a Clebsch-Gordan coefficient [25]. For an

electron with, for example, ms = 1
2 , the expectation value of the energy shift is

〈Hde〉 = −~E · 〈s = 1
2 ,ms = 1

2 |~de|s = 1
2 ,ms = 1

2 〉

= −Ezde,z,
(1.1)
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since the x and y components of any vector operator have only off-diagonal matrix elements.

Such an electron therefore experiences no energy shift associated with Ex or Ey; its dipole

moment lies along z, just like its spin.

1.1.1 P - and T -violation in the Standard Model and beyond

The fact that the dipole moment vector is along the electron spin has profound consequences

for the transformation properties of Hde under parity transformation, P , and time reversal,

T . Since ~s is an angular momentum, it is odd under time reversal but not parity transfor-

mation. On the other hand, an electric field is odd under parity transformation but not

time reversal. Therefore, Hde transforms as follows:

T : Hde → −2de(−~s) · ~E = −Hde

P : Hde → −2de~s · (−~E) = −Hde .
(1.2)

This is, perhaps, the most crucial difference between the EDM of a fundamental particle

and the EDM of a classical charge distribution (in which ~d is even under T and odd under

P ). It also provides an “explanation” for the non-observation of EDM’s: the Standard

Model does not contain enough T -violating parameters to generate electric dipole moments

at observable levels.1 On the other hand, EDMs are a generic consequence of theories

containing both T and P violation [26–28].

To see the significance of EDM’s in the Standard Model and its possible extensions, I will

examine possible sources of P and T violation. In what follows, I will equivocate between T

and CP (symmetry or violation), where C represents charge conjugation. This is justified

by the CPT theorem, which states that CPT is an exact symmetry under extremely general

conditions. Therefore, if T is violated (conserved), then CP must be violated (conserved) in

equal measure to preserve CPT . A heuristic treatment of the CPT theorem can be found

in [29, Sec. 2.1]; technical treatments are in [30–32].

Parity violation is ubiquitous in the weak interaction of the Standard Model because

1. This gets the logic backwards from the history: in the case of the neutron EDM, dn, stringent limits
have constrained the relevant T -violating phase in the Standard Model to |θQCD| . 10−10 [26, Sec. 2.3].
The apparent unlikelihood of such a small dimensionless number is known as the Strong CP Problem .
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W bosons interact only with left-handed matter fields, while the degree of chirality in

interactions with Z bosons is parametrized by the Weinberg angle θW , where sin2 θW ≈ 0.23

[33, Ch. 9]. As a result, P violation is not a “limiting ingredient” to generating EDM

interactions in the SM.

T violation also occurs in the weak interaction Lagrangian, characterized by a phase

in the Cabbibo-Kobayashi-Maskawa (CKM) matrix that appears in the charged current

interaction of the quarks [34]. However, any effect of this phase on the electron’s properties

must be mediated by quarks and W bosons, and the lowest-order non-zero contribution to

the eEDM is a three-loop Feynman diagram. Khriplovich and Pospelov showed that all

three-loop diagrams exactly cancel [35]; following their proof, they comment, “We cannot

get rid of the feeling that this simple result. . . should have a simple transparent explanation.

Unfortunately, we have not been able to find it.”2 The most recent estimate for the value of

de, arising from four-loop diagrams involving the CP -violating phase in the CKM matrix,

is |de| ∼ 10−44 e · cm [38], about fifteen orders of magnitude below current experimental

sensitivity.3

The final CP-violating phase in the SM, θQCD, is constrained by 199Hg and neutron

EDM experiments to be less than 10−10 [26, 41, 42]. Although the size of θQCD is not

strictly in conflict with the SM, its smallness plausibly calls for an explanation from physics

outside the SM. Explaining the anomalous size of θQCD is known as the Strong CP Problem

and is regarded as one of the major problems in theoretical physics [43, Sec. 5]. The origin

of the Strong CP Problem in an EDM measurement demonstrates the suitability of EDM

2. Other authors give a heuristic argument for the cancellation in terms of the GIM mechanism [36], but
do not provide a formal proof [37]. The cancellation has its mathematical root in the antisymmetry of the
reduced Jarlskog invariant [38], but if this isn’t transparent enough for Khriplovich and Pospelov then it
certainly isn’t for me. For an alternative presentation of and commentary on Khriplovich and Pospelov’s
result, independently discovered in 1993, also see [39].

3. A couple of brief asides may clear up some possible confusion. Most earlier references give estimates of
order |de| ∼ 10−38 e·cm, an estimate that can be traced to [40], which disclaims that “it is difficult however to
make a halfway accurate estimate.” In particular, most of the discrepancy with [38] can be accounted for by
the inclusion of a highly uncertain numerical prefactor in the earlier work: “The fact that the factor. . .is quite
large partly reflects. . .the possible presence of large logarithms like ln3(m2

t /m2
u) ≈ 7×103” (emphasis mine).

Furthermore, taking the SM value of |de| ∼ 10−44 e · cm as given, we will see that the dominant signature of
T violating physics in the ACME experiment arises in the SM from a scalar-pseudoscalar electron-nucleon
coupling, rather than an eEDM. In any case, the SM background for the ACME measurement is many orders
of magnitude below current sensitivity.
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Figure 1.1: (Left) Leading contribution to the anomalous magnetic moment of the electron.
(Right) An example one-loop contribution to the eEDM arising in supersymmetric models
[26]. Here e is an electron, γ is a photon, χ is a chargino, and f̃ is a sfermion. The
CP -violating phase φ is introduced at one of the interaction vertices involving f̃ .

experiments to probe surprising features of fundamental physics. Nevertheless, the neutron

EDM is far more sensitive to θQCD than the eEDM, which receives a contribution of only

de ∼ 10−28 e ·cm ×θQCD < 10−38 e ·cm, far below current sensitivity [44]. It is interesting to

note, though, that experimental constraints on θQCD are consistent with a contribution to

de on the same order as the contribution from the CKM phase (or much larger, depending

on the estimate of the CKM contribution).

Additional contributions to the eEDM appear in the minimal extensions to the classic

SM that are necessary to account for neutrino masses. The particular nature of the neutrino

is unknown, including whether it is a Majorana or Dirac fermion. If the neutrino is a Dirac

particle, then there is an analogue to the CKM matrix in the lepton sector known as the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, which contains additional T -violating

phases.4 However, contributions from these phases are suppressed by the small masses of

the neutrinos, and the resulting contributions to de are at the 10−107 e · cm level [45, Sec.

4.1]. On the other hand, simple models of Majorana neutrinos give more complicated results

[45], with generic estimates of de ∼ 10−43 e · cm near the CKM contribution and fine-tuned

estimates of de ∼ 10−33 e · cm only a few orders of magnitude below current experimental

sensitivity [46].

One might get the impression from this summary that it is difficult to construct enough

T violation to generate an electron EDM at the ∼ 10−30 e · cm level. In fact, the SM

is rather special with regard to its dearth of T violation. In extensions to the SM, it

4. I always use “SM” to refer to this model rather than the classic SM with massless neutrinos.
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is straightforward to generate a relatively large eEDM. As a simple example, consider a

theory with a new particle X, CP-violating phase φ, and coupling constant to the electron

f . A one-loop Feynman diagram, analogous to the dominant contribution to the anomalous

magnetic dipole moment, (µe − µB)/2 = (α/2π)µB, could contribute to the dipole moment

de at the order of [26, Sec. 6]

de ∼
[

(

f

e

)2

sinφ
(

me

mX

)2
]

(

α

2π

)

µB ∼ 10−3
(

me

mX

)2

µB, (1.3)

where the square braces provide the scaling relative to the anomalous magnetic dipole

moment and the right-most side applies in the naive case f ∼ e and φ ∼ 1 (see Fig. 1.1).

This relationship is written in natural units. If we assume new particle masses comparable

to those probed by the Large Hadron Collider (LHC), mX ∼ 20 TeV, then we can compute

de ∼ 10−29 e cm, at the level probed by the recently completed ACME measurement,

“ACME II.” In-depth calculations have allowed eEDM searches to significantly constrain

the parameter spaces of more complicated theories [28]. Increased measurement precision

will constrain theories further and, in the possible event of a non-null result, could even

provide the first definitive observation of physics beyond the Standard Model.

While Eq. 1.3 gives a “generic” relationship between a new physics mass scale and |de|,

it is also of interest to note the largest mass scale that can be probed by EDM searches. The

previous estimate suffers from the large suppression factor (me/MX)2; however, in models

with large flavor violation, one factor of me may be replaced by mτ , where mτ ≈ 3×103 me

is the tau lepton mass [47].5 Applying this enhancement directly to Eq. 1.3, we would

anticipate sensitivity to MX ∼ 1 PeV. In fact, models of interest with large flavor violation

tend to predict mass scales of a few hundred TeV for an eEDM near current sensitivity [47,

48].

Atomic and molecular electric dipole moment measurements are generically sensitive to

two additional sources of T violation: the scalar-pseudoscalar electron-proton coupling CS,p

and electron-neutron coupling CS,n. For simplicity of discussion, we define CS(N,Z) =

5. Note that flavor violation is not especially exotic, as neutrino oscillations are already present in any
version of the SM consistent with observations (i.e., in which neutrinos have mass).
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(ZCS,p + NCS,n)/(Z +N), a weighted average of CS,p and CS,n with the weights given by

the number of protons Z and neutrons N , respectively, in an atomic or molecular system

of interest. In the SM, CS ∼ 10−18 can be generated by the CKM phase, corresponding

to dequiv
e (CS) ∼ 10−38 e · cm [38]. Here, dequiv

e (CS) is the size of an electron EDM needed

to mimic the effects of CS in an atomic or molecular T violation measurement such as

ACME. It has also been estimated in [49] that a contribution CS ∼ 0.06 × θQCD could

dominate the CKM contribution. Assuming the bound θQCD ∼ 10−10, we would infer

dequiv
e (CS) ∼ 10−31 e·cm, remarkably near present-day sensitivity. (However, as neutron and

diamagnetic species EDM experiments also advance, it is unlikely that eEDM experiments

could lead in sensitivity to θQCD for the foreseeable future.) Likewise, it is important to

realize that in some BSM theories, dequiv
e (CS) ≫ de [28, Sec. 4.2].

Finally, it is useful to point out that in some BSM theories, two-loop contributions to

the eEDM dominate. In these cases, current eEDM measurements can probe energy scales

up to several TeV rather than several tens of TeV [50, 51].

1.1.2 T violation is generic

Careful treatment of particular BSM theories is far outside the scope of this work; however,

it may be instructive to treat T violation in generic BSM models heuristically. Toward

this end, I will consider an effective field theory (EFT), in which high-energy phenomena

are modeled with new interactions among SM particles. Fermi famously used such an ap-

proach in 1933 to model beta decay via a four-fermion contact interaction (i.e., an incoming

neutron becomes a proton, electron, and antielectron neutrino at a single vertex) [52, 53].

Although beta decay is properly explained by W boson exchange in the weak interaction

[33], such mediating particles need not appear explicitly in order to account for low-energy

observations.

If the SM is an effective field theory of a more complete high-energy theory, then we can

model low-energy phenomena using only SM particles, just as Fermi modeled beta decay

without explicit reference to the W boson. In this case, it is instructive to categorize BSM

effects by the “mass dimension” of an EFT interaction. An interaction among particles in

quantum field theory can be expressed by a term in the Lagrangian density L, such that the
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Figure 1.2: (Left) Feynman diagram representing electron-photon interaction in QED. (Cen-
ter) Beta decay in Fermi’s model. (Right) Beta decay in the Standard Model.

action is defined by S =
∫ Ld3x dt. In natural units, [S] = [~] = [1] and [x] = [t] = [m]−1,

so the Lagrangian density has units of [L] = [m]4. Interaction terms contain products of

field operators corresponding to the kinds of particles that can interact at tree level.

For example, the QED interaction term between a fermion and photon is eAµΨ̄γµΨ,

where e is the elementary charge, Aµ is the electromagnetic four-potential operator, Ψ̄ is

an antifermion spinor, γµ is a (unitless) Dirac matrix, and Ψ is a fermion spinor. This is

graphically represented in a Feynman diagram, where a fermion, antifermion, and photon

meet at a vertex (see Fig. 1.2 left).

Each type of field operator (scalar, fermion, gauge boson, etc.) has characteristic units,

and in natural units these are expressed as powers of mass. Correspondingly, the units, or

“mass dimension,” of any product of field operators can be straightforwardly calculated.

In the example of the QED vertex, we find [AΨ̄Ψ] = [m]4 as required for a term in the

Lagrangian density.6

In an EFT, the effective low-energy interaction is composed of products of operators

with mass dimension greater than four, and therefore requires a dimensionful “coupling

constant” g that characterizes the interaction strength. In the example of a four-fermion

interaction such as [ψ̄ψ̄ψψ] = [m]6, the coupling constant must have units of [m]−2 so that

[gψ̄ψ̄ψψ] = [m]4 has the appropriate units for a Lagrangian density (see Fig. 1.2 center).

These mass dimensions are generated, from the perspective of the high-energy theory, by

6. Fermions carry [m]3/2 and the four-potential carries [m]1.
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suppressing the effective interaction with products of high-energy particle masses. The

coupling constant in Fermi’s four-fermion interaction is GF ∝ 1/M2
W , where MW is the

mass of the W boson. At energy scales significantly below MW ∼ 100 GeV, we can describe

the strength of beta decay in terms of only GF , without any reference to the W boson (Fig.

1.2 right).

EDMs can be generated from EFT interactions such as ψψ̄hF , where h is a higgs

field and F is the electromagnetic field tensor, among other mechanisms [54]. This is a

dimension-six operator and must therefore be suppressed by two powers of high-energy

particle masses. It turns out that there are no T -violating dimension-five operators, but

(counting distinctions among flavors) there are 2499 dimension-six EFT operators using SM

particles [55]. Among these, 1149 exhibit T violation. While the observational effects of

any such operator must be evaluated within the context of a particular model, this simple

counting argument serves to illustrate the ubiquity of T violation in BSM theories.

1.1.3 Empirical support for T violation

In addition to the foregoing theoretical arguments, searches for T -violating BSM physics

are strongly motivated by cosmological observations. In particular, it is obvious that our

immediate surroundings in the solar system contain only trace amounts of antimatter, by

virtue of the fact that we are not instantly annihilated. Careful astronomical observations

reveal the same paucity of antimatter in the rest of the observable universe. Sakharov has

identified several conditions necessary to account for the excess of matter over antimatter,

assuming the universe initially contained equal quantities of each [56]:

1. There must exist processes that violate baryon number B (i.e., the difference between

the number of baryons and the number of antibaryons); this is obvious if B(t = 0) = 0

but B(t > 0) 6= 0.

2. There must exist C violation. If there exists a process that converts ψ to ψ̄ at rate

R(ψ → ψ̄), then the inverse process must occur at a greater rate, R(ψ̄ → ψ) > R(ψ →

ψ̄).

3. There must exist CP violation (which is equivalent to T violation provided CPT is
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an exact symmetry). This closes a loophole in the previous condition: even if, e.g.,

R(ψ̄L → ψL) > R(ψL → ψ̄L), the overall production of matter and antimatter would

be balanced by the CP -inverted relationship R(ψR → ψ̄R) > R(ψ̄R → ψR) unless CP

is also violated.

4. The evolution of the early universe must not occur in thermal equilibrium. In thermal

equilibrium, the relative numbers of matter and antimatter particles are governed

by the Boltzmann factors, exp[−mψc
2/kT ] and exp[−mψ̄c

2/kT ]. Since matter and

antimatter particles have the same mass, they would be thermally produced in equal

proportion.

Naturally, the formal proof of these conditions is more complicated than the remarks above.

We are particularly interested in understanding how condition (3) might be satisfied; see

[57] for a general overview of the approaches discussed here. The T -violating effects in the

SM are believed to be insufficient to account for the degree of matter-antimatter asymmetry

in the universe, necessitating BSM theories. Alternatively, one might look for loopholes in

Sakharov’s conditions. The most obvious candidate is that perhaps the universe had a

matter anti-matter imbalance as a matter of initial conditions, rather than dynamically

generating the imbalance. While this could potentially be consistent with observations, it

is strongly disfavored by inflationary cosmological models, which, though subject to some

degree of controversy [58], currently represent the dominant cosmological paradigm (see [59]

for a favorable review of the literature). Another attempt to evade Sakharov’s conditions is

to postulate that matter and antimatter are equally prevalent over sufficiently large spatial

volumes, but that they are to be found in separate domains of the universe. Analysis of the

cosmic microwave background suggests that any such domains, if they exist, would have

to be larger than the observable universe (a hypothesis which could presumably never be

contradicted by observations). Therefore, the most parsimonious explanation is that the

baryon asymmetry was generated via some BSM CP -violating process.7

7. I do not wish to overstate this case: if we continue to fail to observe signatures of BSM physics, or a
compelling alternative to inflation is discovered, or some other theoretical loophole is found, then at some
point the weight of evidence may turn against the arguments presented here. So while there could be no
eEDM above the SM value, for the time being the motivations for EDM searches appear quite robust.
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1.1.4 Allowed electromagnetic interactions

I would like to close this section by discussing a motivation for eEDM searches that is entirely

independent of T violation: namely, that the EDM is the only allowed electromagnetic

interaction that has not yet been observed for a fundamental spin-1/2 particle.

The well-known electromagnetic moments of the electron are the electric monopole

(charge) and magnetic dipole moments. In general, an electromagnetic source (charge

and current) distribution can be characterized, far from all sources, as an infinite series

of electric and magnetic multipole moments. In the near field, an infinite series of toroidal

multipole moments must also be included. For example, in the static limit, the toroidal

dipole moment is equivalent to an anapole moment and couples directly to the external

current density, Ha = −~a · ~J [60].

However, a particle’s spin places constraints on the non-zero electromagnetic moments

it can have. Just as a spin-1/2 particle cannot support independent magnetic and electric

dipole moments (but rather they must be aligned or anti-aligned with respect to each other),

it cannot support quadrupole or higher moments. In particular, only the electric charge

and three dipole moments may be non-zero [61].

More formally, the Lagrangian density of the classical electromagnetic field in the pres-

ence of matter is L = −(1/4)FµνF
µν + jµA

µ, where Fµν is the electromagnetic field tensor,

jµ is the external current density, and Aµ is the four-potential. In quantum electrodynam-

ics (QED), F and A are promoted to operators, and jµQED = eΨ̄γµΨ is the current density

operator. The QED current density describes, at tree level, the coupling of an elemen-

tary charge and magnetic dipole moment equal to the Bohr magneton. Higher-order loop

corrections generate the anomalous magnetic moment. However, additional terms in the

Lagrangian of a theory, L = LQED +Ladd., can modify the effective coupling of a particle to

the electromagnetic field so that jµeff 6= jµQED. If we require the coupling of a Dirac particle to

be Lorentz covariant and invariant under electromagnetic gauge transformations, then only

four kinds of couplings are possible, corresponding to the charge, magnetic dipole moment,

electric dipole moment, and anapole moment [61].

The value of the electron’s electric charge is protected from corrections by the Ward
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identity, which is a consequence of gauge invariance [24, Sec. 7.5]. Experimentally, any

surviving correction could likely be inferred by comparing the proton and electron charges,

which have been established to differ by no more than 1 part in 1020 [62]. The anomalous

magnetic moment has been measured at better than the 10−9 level [63] and agrees with

eighth-order perturbation theory calculations using QED [64].

In the case of the electron, the numerical value of the anapole moment is not invariant

under electroweak gauge transformations and therefore can’t be regarded as a physically

meaningful quantity [61]8. Therefore, the only unmeasured purely electromagnetic moment

of the electron allowed by electroweak gauge invariance and Lorentz invariance is the electric

dipole moment.

1.2 Brief history of EDM measurements

1.2.1 Separated oscillatory field measurement

The EDM Hamiltonian Hde = −(2de)~s · ~E has the same form as the magnetic dipole moment

Hamiltonian Hµ = +(gSµB)~s· ~B, up to the numerical prefactors 9. In 1949, Norman Ramsey

developed a technique known as “separated oscillatory fields” to measure nuclear magnetic

moments [69, 70]. Most eEDM experiments have used some variant of this technique since.

The method is simplest to understand in the context of a classical magnetic moment or,

equivalently, a two-level quantum system for which the orientation on the Bloch sphere

replaces the orientation of the classical angular momentum vector. There are five steps:

(1) A beam of particles is prepared in an eigenstate (e.g., by a magnetic state selector that

deflects undesired spin projections) along the z-axis of the Bloch sphere; (2) a π/2 pulse is

8. Confusingly, a different gauge-invariant quantity can be defined and is sometimes called the anapole
moment [65]. However, this latter quantity can’t be viewed strictly as an electromagnetic coupling. Never-
theless, nuclear anapole moments are of interest, in part because the relative contribution of electromagnetic
and weak interactions to the anapole moment in a particular gauge have different scalings with the atomic
weight of a nucleus. To date, the nuclear anapole moment has been measured in only one species [66].

9. The convention for Hd is that 〈ms = s|Hd|ms = s〉 = −deE , independent of the magnitude of s, while
for a magnetic moment (consistent with the classical interpretation of a spinning charge), the convention
is that 〈ms = s|Hµ|ms = s〉 ∝ s. Further, because the electron is negatively charged, µ̂ = −ŝ, with a
convention that gS > 0. Confusingly, we always use a molecular Zeeman interaction Hµ = −gµBMB for a
z-aligned magnetic field: note the sign difference in the interaction for a positive g-factor (e.g., see [67]). I
am, of course, not the first to notice that this discrepancy is unfortunate; a rather thorough critique of the
electron g-factor sign convention can be found in [68].
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applied by an electromagnetic field (e.g., from radio-frequency coils) oscillating at frequency

ω, populating a coherent superposition of the two eigenstates that lies in the xy-plane of

the Bloch sphere; (3) the molecules traverse a region with constant field along the z-axis

that causes the state to precess in the xy-plane of the Bloch sphere at Larmor frequency

ωL; (4) another π/2 pulse is applied at frequency ω, mapping the Bloch sphere azimuthal

angle (precession phase) onto the polar angle (state population) according to the frequency

difference ωL − ω; (5) the population in each state is recorded (e.g., by another magnetic

state selector). This allows for a precise determination of the precession frequency ωL.

The experimental protocol used in the ACME experiment actually differs from the classic

Ramsey scheme in important respects, and will be described in detail in Sec. 2.2. The state

preparation and readout (roughly analogous to steps 1-2 and 4-5, respectively, in a Ramsey

measurement) are achieved in ACME via laser-induced electronic transitions. The constant-

field, or “interaction” region (analogous to step 3 above) contains both static electric and

magnetic fields. The signature of an eEDM is a change in precession frequency upon reversal

of the relative direction between the electron’s spin and electric field experienced by the

electron.

Application of the energy-time uncertainty principle gives the correct scaling for the

measurement precision [29, Sec. 3.1] as follows. The observed precession frequency ω has

an uncertainty ∆ω for a single-particle measurement given by ∆ω τ ∼ 1, where τ is the

precession time. Since the EDM-induced precession is given by ω = −~de · ~E , we see that

∆de ∼ ~/(E τ). Ideally, the noise is dominated by quantum projection, so the uncertainty

in the eEDM for a measurement of N particles is at least roughly ∆de ∼ ~/(E τ
√
N). In

practice, only a small fraction ǫ of molecules is typically detected, so the dominant noise

source is shot noise, e.g., from fluorescence photons. In this case, the precision scales as

1/
√
Nǫ ≡ 1/

√
Ndet. For this reason, we simply consider the number of detected molecules

directly rather than the number of molecules involved in the measurement, N . Further,

N = ṅT is constrained by a practical integration time T (typically a few weeks) for a

given achievable preparation rate ṅ. An ideal system maximizes the product E τ
√
ṅ while

remaining robust against systematic errors.
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Atom Z S Ref.

Rb 37 28 [74]
Cs 55 133 [74]
Tl 81 -585 [75]

129Xe 54 −8 × 10−4 [76]
199Hg 80 1 × 10−2 [76]

Table 1.1: Relativistic enhancement factors, S, for important atoms.

1.2.2 Systems for eEDM measurements

Searches for the eEDM cannot be performed precisely with free electrons since the ap-

plied electric field responsible for the EDM energy shift will accelerate the electrons out

of the interaction region, thus dramatically limiting the precession time per electron. In

order to obtain useful observation times, we must therefore use bound electrons. A naive

computation of the expected interaction energy in an electrostatically bound system would

give 〈Hde〉 = −〈~de · ~E〉, where 〈〉 indicates the quantum-mechanical average over an elec-

tron orbit. Since the electron spin is typically fixed over an orbit, one might expect

〈Hde〉 = −~de · 〈~E〉 = 0, where 〈~E〉 = 0 is a necessary condition of electrostatic binding.

This result, in the context of a more sophisticated calculation using the Dirac equation, is

known as Schiff’s theorem [71].

Relativistic effects modify the argument above because the dipole moment vector de is

contracted along the direction of the electron’s momentum and is thus dependent on the

electron’s position in the Coulomb potential from the nucleus.10 As a result, 〈~de · ~E〉 6=

〈~de〉 · 〈~E〉 and an EDM interaction may produce a non-zero first-order energy shift in an

electrostatically bound system [72, 73]. The effective electric field is defined by drest
e Eeff =

〈~de · ~E〉. In many cases, the magnitude of the effective electric field can be significantly

enhanced beyond an applied laboratory field.

Experiments have been performed and proposed to measure the eEDM in a variety of

systems, categorized below.

10. Obviously, in both the relativistic and non-relativistic case, the electric field, ~E , acting on the electron
also depends on the electron’s position in the nuclear Coulomb potential. However, it is only necessary for
either ~de or ~E , not both, to be position-independent in order to factor 〈~de · ~E〉 in the non-relativistic case.
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1.2.3 Paramagnetic atoms

It wasn’t suggested until 1950 that elementary particles might possess electric dipole mo-

ments [69]. Limits on the eEDM were initially extracted from Lamb shift (2 × 10−13 e cm)

[77], electron g-factor (3×10−15–4×10−16 e cm) [78, 79], and atomic scattering experiments

(10−15–2 × 10−16 e cm) [80, 81].

The eEDM interaction in a paramagnetic atom couples the unpaired electron spin to the

atom’s effective internal electric field, whose magnitude depends on the polarization of the

atom. To maximize the relativistic enhancement, heavy atoms with highly-charged nuclei

are preferred. In free space, the Hamiltonian of the atomic system is even under parity

inversion so that ~Eeff = 0 even with the relativistic enhancement. However, an applied

electric field can mix opposite-parity states such that the eigenstates of the system are not

eigenstates of parity, and thus ~Eeff , a vector quantity that is odd under parity, may be

non-zero. Since opposite-parity atomic energy levels in heavy atoms are typically separated

on the order of 1 eV, the atomic polarization remains in the linear perturbative regime

even for the largest achievable laboratory fields, ~Eapplied. Thus, in atoms, ~Eeff = S~Eapplied,

where S is known as the enhancement factor. See Table 1.1 for the enhancement factors of

several atomic species. The enhancement factors, S, of paramagnetic species are of order

∼ 10 × Z3α2. The proportionality to Z3α2 can be found with elementary arguments for a

hydrogen-like atom due to a combination of smaller orbital radius, larger electric field, and

larger orbital velocity (i.e., relativistic effects) as Z increases (see [29, Sec. 6.2]).

An early eEDM limit was set by an experiment using optical pumping of Rb atoms in

a vapor cell (3 × 10−20 e cm using SRb from [74]) [82]. Atomic beam experiments using Cs

quickly surpassed this technique due to the ability to apply larger electric fields (2 × 10−21–

2 × 10−23 e cm) [74, 83–87]11 , although ultimately the best limit set with Cs used a vapor

cell (2 × 10−25 e cm) [88]. More modern approaches plan to use laser-cooled and trapped

Cs atoms to achieve longer coherence times [89–91].

The best limit to date using paramagnetic atoms was set using an atomic beam of Tl,

11. Be warned that multiple papers from this group report limits less stringent than those reported by
the same group in earlier years. After the systematic errors in atomic EDM experiments became better
understood, the interpretation of reported limits becomes much more straightforward. My reading of the
literature is that the results before 1969 should be regarded with a skeptical eye.
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which has a favorable relativistic enhancement factor, S = −585 (4 × 10−24–2 × 10−27 e

cm) [92–96]. The most recent Tl experiment was limited by three kinds of systematic

errors that can be suppressed in carefully-chosen molecules. First, a beam of molecules

with velocity ~v in an electric field ~E experiences a “motional” magnetic field ~Bmot ∝ ~v × ~E .

This field can couple to a magnetic dipole moment and cause ~E-correlated spin precession.

Second, laboratory magnetic field gradients can couple to the motional magnetic field to

produce ~E-correlated geometric phases. Third, the leakage current between the electric field

plates produces a magnetic field correlated with the applied voltage. In the Tl experiment,

|Eapplied| ≈ 120 kV/cm, making leakage currents difficult to eliminate. These three effects

cause spin precession (via the Zeeman effect) that is correlated with the applied electric

field, mimicking an eEDM signal.

1.2.4 Diamagnetic atoms

Since diamagnetic atoms don’t have an unpaired electron spin, they are less sensitive to the

eEDM interaction than paramagnetic atoms. However, second-order effects can lead to an

eEDM-induced atomic dipole moment. For example, the hyperfine interaction HHFS ∝ ~σ ·~I,

where ~σ is an electron spin Pauli operator and ~I is the nuclear spin, can induce singlet-

triplet mixing that generates a small component of the state with net spin ~S ≡ ∑

i ~σi that

lies along ~I. This spin can couple to the effective electric field via the eEDM interaction in

a polarized atom. In fact, the dominant contribution to an eEDM signature in diamagnetic

atoms is a third-order effect due to a relativistic enhancement of the interaction between

the dipole moment and the magnetic field of the nucleus [97]. Detailed calculations can be

found elsewhere [98]. The resulting “enhancement factors” are no more than S ∼ 10−2 (see

Table 1.1).

Despite this disadvantage, eEDM limits from experiments using diamagnetic atoms can

be competitive due to the long achievable coherence times. Their small magnetic moment

suppresses the impact of systematic errors like the ones that limited the Tl experiment.

Further, inter-atomic collisions occur too quickly for spin-exchange interactions to occur

between nuclei [99]. Another common source of decoherence, spin relaxation upon colli-

sions with the walls of a vapor cell, are believed to occur due to interactions with local
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paramagnetic sites, although the theory of wall collisions is not well-understood. The cou-

pling of these paramagnetic sites to the nucleus is much smaller than for an unpaired valence

electron.

In addition, P - and T -violating effects in the nucleus of a diamagnetic atom can induce

an atomic dipole moment [100] characterized by the Schiff moment. Permanent EDM

searches in diamagnetic atoms thus remain powerful probes of T -violating physics even

with the enhanced sensitivity of molecular experiments to the eEDM, discussed above.

An early xenon-based eEDM search used a metastable paramagnetic state with en-

hancement factor S = 130 to find |de| < 2 × 10−24 e cm, comparable to the thallium result

achieved in the same year [101]. Subsequent vapor-cell experiments with 129Xe in the dia-

magnetic ground state were unable to achieve the same level of sensitivity to the eEDM

(1 × 10−23–5 × 10−24 e cm), but placed new limits on the Schiff moment [102, 103].

Later vapor-cell experiments with 199Hg were able to set tight constraints on the Schiff

moment and ultimately placed a limit on the eEDM comparable to the thallium result

(2×10−24–7×10−28 e cm) [42, 104–108]. Certain classes of diamagnetic atoms with octupole-

deformed, or “pear-shaped,” nuclei have significantly enhanced sensitivity to T -violating

phenomena [109, 110]. To exploit this enhancement, initial measurements of the dipole

moment of 225Ra in an optical trap have already been made [111, 112], and an experiment

with 223Rn atoms is now under development [113].

1.2.5 Molecules

Sandars pointed out as early as 1967 that molecules could be an advantageous class of sys-

tems for EDM searches due to the high polarizability associated with nearby opposite-parity

rotational levels. TlF was suggested due to its suitability for molecular beam experiments

and the large relativistic enhancement from the heavy Tl nucleus [114]. However, TlF is

diamagnetic and is thus best suited to constrain T -violating interactions in the nucleus

rather than the eEDM. Both the groups of Edward Hinds and Norman Ramsey performed

a series of measurements using this molecule, which were typically an order of magnitude

less restrictive of the eEDM than concurrent experiments with paramagnetic atoms [115–

118]. A new TlF experiment using modern molecular physics techniques, to probe the same
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nuclear T -violating phenomena, is now underway [119, 120].

The Hinds group subsequently performed an experiment with paramagnetic YbF in

the ground state, which had become feasible with advances in laser and molecular beam

production technologies. They initially produced YbF via effusion of Yb and AlF3 out

of an oven source, but later developed a higher-flux source using laser-ablated molecules

cooled by supersonic expansion in a carrier gas [121]. Although their flux was still small

compared to atomic experiments, they were able to achieve a limit |de| < 1 × 10−27 e cm

with longer integration time. Further, the high molecular polarizability allowed them to

achieve an effective electric field greater by a factor of 220 than the Tl experiment. Perhaps

most importantly, they evaded previously-limiting systematic errors by operating at a lower

applied electric field than is feasible with atoms and by exploiting the large molecular tensor

Stark shift, which naturally suppresses the effect of motional magnetic fields and geometric

phases [122]. Major upgrades to their apparatus are currently being developed to measure

the eEDM in a molecular fountain, which would allow for a greater precession time [123].

A later experiment using PbO sought to improve on the YbF result in two major respects

[124, 125]. First, a vapor cell was used instead of a beam so that high densities could be

obtained. Second, the measurement state has Ω-doublet structure, which leads to nearly-

degenerate states of opposite parity. These states are split by the interaction between

the electronic angular momentum and the molecular rotation. Such splittings are tens to

hundreds of kHz, in contrast to rotational levels, which are typically split by tens of GHz.

This allows molecules in Ω-doublet states to be fully polarized with electric fields on the

order of 10 V/cm.

The quantum number N characterizes whether an Ω-doublet molecule is aligned or anti-

aligned with the polarizing field. Opposite-N states can be resolved spectroscopically and

respond identically to magnetic fields to a good approximation. Energy shifts common to

the two N states can thus be used to infer magnetic fields, while energy shifts opposite

between the two N states are a signature of an eEDM. For this reason, molecules with

Ω-doublet structure are said to have an “internal comagnetometer.”

Ultimately, the PbO experiment was unable to suppress stray electromagnetic fields

and field gradients at a sufficient level to set a new limit (|de| < 2 × 10−26 e cm), in part

19



due to the complex construction of the vapor cell apparatus. However, this experiment

demonstrated the power of Ω-doublets to probe and suppress systematic errors.

The ACME collaboration chose to perform an experiment with ThO based on the fol-

lowing criteria[126]:

1. A valence electron is in a σ orbital (analogous to an atomic s orbital, i.e., with no

orbital angular momentum) so it can orbit near a heavy atomic nucleus and experience

a relativistic enhancement

2. The molecule has Ω-doublet structure for systematic error rejection

3. The electronic orbital angular momentum is twice the electronic spin in magnitude

and opposite in direction for systematic error suppression, as discussed below

4. Long coherence times are feasible

5. It is diatomic for spectroscopic simplicity

6. It can be efficiently produced in a beam

7. Its relevant energy transitions are accessible by affordable lasers.

These conditions narrowly constrain the list of appealing molecules.

Condition (3) can be written Λ = −2Σ, where Λ is the electronic orbital angular mo-

mentum and Σ is the total electronic spin (projected along the internuclear axis; see Sec.

2.1). This ensures that the state is very magnetically insensitive since the total magnetic

g-factor is gtot = glΛ + gsΣ ≈ Λ + 2Σ = 0. The reduced sensitivity to magnetic fields

suppresses classes of systematic errors commonly found in other experiments. In practice,

gtot 6= 0 due to mixing with other states and corrections to the electronic g-factor, gs. In

the H state of ThO, |µ| < 10−2µB [127].

The upper limit for “long” coherence times in condition (4) is set by feasible length

scales for a molecular beam experiment. For a relatively slow beam with speed v ∼ 200

m/s and interaction length L ∼ 20 cm, useful lifetimes are on the order of 1 ms and above.

The lifetime of the metastable H state in ThO is approximately 2 ms[126].
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The apparatus used in the ACME experiment is discussed in Section 2.3. The previous

result set an eEDM limit at |de| < 9 × 10−29 e cm [128, 129].

Many similar considerations have motivated another eEDM search using the ground 3∆1

state of WC [130, 131]. An eEDM experiment in the ground state of BaF has also been

recently proposed to exploit some of the favorable attributes of molecules [132].

Building on rapid advances in molecular physics techniques, there has also been a pro-

posal to perform an eEDM experiment in a polyatomic molecule (i.e., with at least three

atoms) [133]. Such molecules, in contrast to atoms or diatomic molecules, have angular

momentum associated with vibrational degrees of freedom, allowing for technically simple

polarization and rejection of systematic errors in a manner analogous to the Ω-doublet struc-

ture of some diatomic molecules. However, these advantagous features are not intrinsically

linked to the electronic state (unlike in an Ω-doublet), allowing for independent optimiza-

tion of electronic properties for eEDM sensitivity and control, most notably through laser

cooling. An experiment pursuing polyatomic Yb-based molecules is now in development.

Finally, some groups have proposed performing an eEDM using trapped molecular ions

with 3∆1 structure, which have many of the advantages of neutral molecules discussed above

[134, 135]. Only a few ions can be trapped simultaneously before significant systematic

errors are produced due to strong ion-ion interactions, but coherence times as long as 1

second are achievable. Since the eEDM sensitivity scales as the coherence time but only

as the square root of molecule number, these systems could be competitive with beams

of neutral molecules. The most noteworthy experiment of this type, based at JILA, uses

HfF+ ions, which recently reported a measurement at comparable sensitivity to the first-

generation ACME result [136].

1.2.6 Solid-state systems

The effect of an eEDM can be enhanced in a solid-state system due to the possibility

of a large number of unpaired electron spins. Two different approaches have been used

for solid-state eEDM searches. First, an electric field can be applied across a solid-state

sample. The eEDM will cause the electron spins to become aligned with the external

field, and the sample will become magnetized due to the spins’ magnetic moments. The
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magnetization can then be detected with a superconducting quantum interference device

(SQUID). The first solid-state eEDM experiment was of this type and found |de| < 1 ×

10−22 e cm [137]. Subsequent technological improvements have allowed this technique to

achieve sensitivities greater by several orders of magnitude using gadolinium gallium garnet

(GGG) and Eu0.5Ba0.5TiO3 (8–6 × 10−25 e cm) [138, 139]. Avenues for improving these

measurements include lower sample temperatures to reduce leakage currents, higher applied

voltage on the field plates and reduced sample thickness to increase the electric field, and

improved coupling efficiency to the SQUIDs. Significant advances in these areas could

yield statistical sensitivities comparable to molecular experiments, although it is difficult to

predict the role of systematic errors in this regime.

The second approach to solid-state eEDM measurements uses the reverse process: a

magnetic field is applied to align unpaired electron spins. If the electrons have an EDM, then

they will generate a voltage difference across the sample. This technique was demonstrated

in 2005 using gadolinium-iron garnet (GdIG) and achieved |de| < 5 × 10−24 e cm [140].

A rather different idea has recently been proposed to leverage the enormous numbers

(and correspondingly favorable shot noise limits) in solid-state-based systems: it may be

possible to perform an eEDM measurement by embedding polar molecules (e.g., YbF) in a

solid matrix of chemically inert species (Ne, Ar, etc.) [141, 142].

1.2.7 Summary of progress in EDM searches

The history of experimental EDM searches is less a march than a six-decade-long charge

of progress. The most important results to date from paramagnetic atoms and molecules

are shown in Fig 1.3. The y-axis gives de sensitivity in terms of the energy scale probed

in BSM models, according to a representative scaling found in [21]. Fig. 1.3 is known as

a Livingston plot, after the accelerator physicist Milton Stanley Livingston, who observed

that the energies probed by particle accelerators grows exponentially in time. Unfortunately,

that trend is not projected to hold into the future.12 For comparison, I have shown the

12. As [143] notes, “yet the figure of merit of energy reach in the constituent center-of-momentum frame is
far from the entire story of enabling capabilities.” Considerations such as collider luminosity and constituent
species play an important role in the physics probed. In a similar spirit, it should be clear that EDM searches
do not necessarily probe the same parameter space as colliders.
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Figure 1.3: Livingston plot showing energy scale probed by hadron colliders (blue diamonds)
and atomic and molecular eEDM measurements. Collider data from [143] represent the
“reach” of experiments, generally smaller than the center-of-mass collision energy. Trendline
shows fit to eEDM experiments since 1969, with an order of magnitude improvement in
energy reach every ∼ 18 years. Up to now, collider energies have advanced at a similar
exponential rate, but future planned colliders fall well below the historical trend line. All
eEDM results are scaled to give corresponding sensitivities to the stop mass as computed
from two-loop effects in [50] (see Fig. 9 therein). The dashed line represents the sensitivity
to the (even higher) energy scale of a selectron contributing to one-loop effects with typical
parameter values as shown in Fig. 8 of the review [21]. While alternate theoretical models
may shift the data points (and corresponding trendlines) up or down, the conclusion of
exponential growth in energy reach with time is model-independent. For reference, trend
for recent collider results is shown (dotted blue line). The datum for hadron colliders from
2018 represents an up-to-date bound from the LHC on the stop mass, for direct comparison
with two-loop eEDM constraints on the stop mass. Note that while EDM measurements
have been sensitive to one-loop effects occuring at energy scales comparable to or exceeding
colliders for decades, they are now probing even two-loop effects at energy scales exceeding
those accessible to the LHC.
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energy scale of historical colliders together with experimental eEDM results. Remarkably,

the exponential growth of energy sensitivity found in EDM experiments has been maintained

for at least five decades and shows no sign of slowing.
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Chapter 2

Experimental overview

Imagination is for turbo-nerds

who can’t handle how kick-butt reality is!

Adventure Time

The methodology and apparatus of the ACME experiment are described in detail in

prior theses [144–151] and publications [67, 126–129, 152–155]. The most comprehensive

overview of the first ACME measurement, ACME I, may be found in [129]. The recently

completed measurement, ACME II, is similar in most essential respects; see the recent result

paper, [156]. In this chapter, I will describe the basic measurement approach and experi-

mental apparatus, with particular attention to the “rotational cooling” used to increase the

population of ThO molecules in a single quantum state prior to the EDM measurement

2.1 Molecular structure

It is useful to review molecular structure before describing in detail how to perform an EDM

measurement using 232Th16O molecules. Comprehensive references on diatomic molecules

include [157, 158]. Previous ACME theses contain more concise summaries of the aspects

of molecular structure that are relevant to the ACME experiment; for a reasonably compre-

hensive overview, I recommend Nick Hutzler’s dissertation [146]. The goal of this section is

to give a conceptual grounding in the most essential features of diatomic molecules rather

than to make any formal derivations.
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2.1.1 Vibrational motion

In order for a diatomic molecule to exist, there must of course be an attractive potential

between the two atomic nuclei, which dominates when the atoms are far apart, and a

compensating repulsive barrier so the nuclei do not collide at short range. The equilibrium

distance between nuclei occurs at the minimum of the overall potential energy curve (as

a function of internuclear distance), and the potential is approximately harmonic in the

vicinity of this equilibrium position (re = 1.8 Å in ThO [159]). As a result, the motion of

the nuclei with respect to each other is characterized by a ladder of quantum energy levels,

Ev = ωv(v + 1
2), where Ev is the “vibrational energy,” v denotes the vibrational quantum

number, and ωv = 896 cm−1 is the energy constant of a vibrational excitation in ThO

[159]. Especially at larger vibrational amplitudes, v > 1, the potential may have significant

anharmonic contributions. However, the essential picture of a ladder of quantized energy

levels, describing the oscillation of nuclei like masses connected by a spring, remains.

2.1.2 Rotational motion

For simplicity, now consider a diatomic molecule with its nuclei “frozen” at their equilibrium

separation. The geometry of such a molecule is that of a dumbell, and it has an associated

moment of inertia I for rotations about an axis passing through its center of mass and

perpendicular to the internuclear axis. Classically, the energy of such a rotation with angular

momentum N is HN = 1
2IN

2. For a molecule, the angular momentum N = n~ is an integer

multiple of the reduced planck constant and the energy is the eigenvalue of the operator

HN . For a molecular state with a well-defined value of N , we write HN |N〉 = 1
2IN

2|N〉

and thus interpret the rotational energy as EN = 1
2IN(N + 1). We conventionally write 1

2I

as the “rotational constant” B, approximately 0.333 cm−1 in the ground electronic state of

ThO [160].

In general, the rotational constant is actually a weak function of the vibrational state v

because the vibration modifies the moment of inertia I. Likewise, a high degree of molecular

rotation induces a large centrifugal force on the nuclei and stretches out the equilibrium

separation, thus modifying the moment of inertia. Fortunately, these higher-order effects
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will not be critical to the ACME measurement.

Note that the rotational energy level spacing grows quickly with rotational quanta, but

is characteristically much smaller than the vibrational spacing.

2.1.3 Electronic structure

So far we have entirely ignored the properties of the electrons in the molecule (except

implicitly insofar as they are essential to the bonding of the molecule). Depending on the

relative strengths among various energy scales (spin-orbit coupling, rotation, and coupling

of the electron orbit to the internuclear axis by the internal molecular electric field), different

quantum bases may be more or less convenient to describe an electronic configuration. The

limiting situations are known as Hund’s cases.

In Hund’s case (a), which will usually be most convenient for discussing properties of

ThO in the ACME experiment, the electronic orbital angular momentum ~L is strongly

coupled to the internuclear axis by electrostatic binding. Therefore, the projection of ~L

along the internuclear axis is well-defined: ~L · n̂|ψ〉 = Λ|ψ〉, where |ψ〉 is the molecular

state and n̂ is the internuclear axis defined by our convention to point from the negative

to positive nucleus in a polar diatomic molecule (and thus from O to Th). Colloquially, we

say the orbital angular momentum is pinned to the internuclear axis.

A further defining feature of Hund’s case (a) molecules is that the spin-orbit coupling is

strong enough to “pin” the electron spin axis along the electron orbital angular momentum,

and thus also along the internuclear axis: ~S · n̂|ψ〉 = Σ|ψ〉, where ~S is the electron spin

operator.

Furthermore, in Hund’s case (a), the rotational energy level spacing is small compared to

the spin-orbit coupling. As a result, we interpret states with different spin-orbit components

(e.g., opposite relative orientations of ~L and ~S) as completely distinct electronic manifolds,

each of which have their own ladders of vibrational and rotational energy levels. Although

the opposite case will not be relevant to the present work, it is important to be aware that

many molecules are well-described by Hund’s case (b)), in which the spin-orbit coupling

is small compared to the rotational spacing and states with different spin-orbit character

are regarded as comprising additional sub-structure of a single electronic state rather than
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distinct “electronic manifolds.”

Because Λ and Σ are independently good quantum numbers in Hund’s case (a), it

follows that their sum, Ω ≡ Λ + Σ, is also a good quantum number. Furthermore, the total

electron spin S is well-defined. The total angular momentum J is always a good quantum

number due to rotational invariance (in the lab frame) of the molecule’s Hamiltonian. We

typically write the state of a molecule well-described by Hund’s case (a) using a molecular

term symbol, 2S+1|Λ||Ω|(v, J,m), where the 2S + 1 superscript denotes the total electron

spin degeneracy, |Λ| is the magnitude of orbital angular momentum projected along the

internuclear axis, and |Ω| is the magnitude of total spin angular momentum projected along

the internuclear axis. The quantities (v, J) may or may not be written explicitly, but I

have included them as a reminder that the molecular vibration and rotation also need to be

considered. The value of |Λ| is conventionally indicated by capital Greek letters Σ,Π,∆, · · ·

for |Λ| = 0, 1, 2, · · · (which is particularly unfortunate since Σ is also the projection of the

electron spin along the internuclear axis).

For example, the ground state of ThO is X1Σ0, denoting S = 0, Λ = 0, and Ω = 0. The

“science state” in ThO, used in the eEDM measurement, is H3∆1, indicating S = 1, |Λ| = 2,

and |Ω| = |Λ + Σ| = 1. It follows that Σ = ±1 = ∓Ω with Λ = ∓2Σ = ±2Ω. It is critical

that there are two possible configurations of the H state, with the total electronic angular

momentum either along or against the internuclear axis. These states, with Ω = ±1, are

very nearly degenerate. This (near) double-degeneracy is known as Ω-doubling and will be

described in Sec. 2.1.4.

In most states of ThO, the spin-orbit coupling is so strong that only the total electronic

orbital angular momentum ~Je ≡ ~L + ~S can be considered. As a result, Λ and Σ are no

longer good quantum numbers, but Ω = ~Je · n̂ remains a good quantum number. This is

described by Hund’s case (c), where the only good quantum numbers are Ω and J . It is

typically convenient to decompose a Hund’s case (c) state as a sum of states with Hund’s

case (a) character. For example, calculations show that we can decompose the C state as

C ≈ 0.77 1Π1 + 0.20 3Π1 + 0.02 3∆1 [159]. Of course, even a relatively good Hund’s case (a)

state, like X or H, will typically have some small admixture of additional molecular terms.
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2.1.4 Ω-doubling

Here we will explore important consequences of the double-degeneracy of H3∆1 state. To do

this, we will return to the rotational Hamiltonian and rewrite it in terms of other quantum

numbers: Hrot = BR2 = B( ~J − ~Je)
2 = BJ2 + BJ2

e − 2B ~J · ~Je, where ~R is the rigid-body

rotational angular momentum of the molecule. Within a given electronic manifold, BJ2
e

is a constant, which we will therefore not consider further. The first term, BJ2, leads to

a ladder of states with energies BJ(J + 1) as we’d expect for a purely rotational energy

contribution. We therefore conventionally refer to states with distinct J as “rotational”

levels, even though ~J is actually defined to include all angular momenta of the molecule

(not just rotation). The last term, −2B ~J · ~Je, generates Ω-doubling. Although a careful

calculation is somewhat involved (e.g., see [145, Sec. 3.0.2]), we will motivate its essential

consequences.

Working in the molecular frame with ẑ = n̂, this term contributes the “Coriolis” inter-

action HCor = −2B ~J · ~Je = −2B( ~J · n̂ ~Je · n̂ − J−J+
e − J+J−

e ), where J± are raising and

lowering operators. Since the rotational angular momentum ~R has no component along the

internuclear axis, the first term in parentheses reduces to Ω2, a constant of the electronic

manifold. The remaining terms raise and lower the component of the electronic angular

momentum along the internuclear axis, i.e. Ω. Since electronic states have well-defined Ω,

these terms cannot create a first-order energy shift, 〈J±
e 〉 = 0. However, states of opposite

Ω, i.e. Ω = ±1 in the H state of ThO, can be coupled to each other at second order in

this Coriolis interaction via an intermediate state with Ω = 0. The expected energy shift

at second order in perturbation theory is therefore of the order ∼ B2

A , where A ∼ 400 cm−1

is the spin-orbit constant in ThO that characterizes the separation between an |Ω| = 1 and

Ω = 0 state (such as the A3Π0 and B3Π1 states). This second-order interaction causes a

splitting of the nominal double-degeneracy in H3∆1(J = 1) by 360 kHz [146, Sec. D.3].

We now turn to the question of the parity of these states. Writing a state in a Hund’s
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case (a) basis, the typical parity transformation P behaves as [158, Sec. 6.9.3]

P |S,Σ〉 = (−1)S−Σ|S,−Σ〉

P |J,Ω,M〉 = (−1)J−Ω|J,−Ω,M〉

P |Λ〉 = (−1)Λ| − Λ〉,

(2.1)

where I have separated the wavefunction into parts depending on the electron spin and

its projection, total angular momentum and its projections, and the projection of electron

orbital angular momentum. The quantum number M is the projection of total angular

momentum ~J along the laboratory z-axis. Using these transformation rules, one can see

that parity eigenstates are

|J,M,±〉 =
1√
2

(|J,Ω,M〉 ± (−1)J−S |J,−Ω,M〉), (2.2)

where I have dropped kets involving implicitly constrained quantum numbers (e.g., Σ = −Ω

in H). Therefore, in the absence of an external electric field to break the parity symmetry,

the eigenstates of H are even and odd superpositions of states with opposite Ω, and these

nearly-degenerate states form a “parity doublet.”

2.1.5 Molecule orientation

In the absence of external fields, the Hamiltonian of a molecule is rotationally symmetric

and therefore 〈~Eeff〉 = 0. Therefore, we must orient ThO molecules with respect to our

laboratory frame in order to probe the EDM interaction, H = −2de~s · ~Eeff . An oriented

molecule is not a parity eigenstate: let us denote the state of a molecule oriented along the

lab z-axis by |⇑〉 and one oriented against the lab z-axis by |⇓〉. Then the parity eigenstates

are superpositions of oriented molecules, |P = ±〉 = |⇑〉 ± |⇓〉. Conversely, the oriented

states |⇑〉 and |⇓〉 are superpositions of parity eigenstates |P = ±〉.

As a result, opposite-parity states must be mixed, typically by an external electric field,

in order to obtain molecules that are oriented in the lab frame. The eigenstates of the

molecule approach {|⇑〉, |⇓〉} when the perturbing (parity-mixing) energy greatly exceeds

the energy splitting ∆P between opposite-parity states, |DElab| ≫ ∆P , where D is the
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Figure 2.1: The level structure of H3∆1(J = 1) in externally applied electric and magnetic
fields along the laboratory z-axis, Elab and Blab, as well as the EDM shift Hd = −deEeffM ×
Ñ Ẽ . (a) Energy levels in the absence of external fields. Opposite-parity states are split
by ∆Ω ≈ 360 kHz. (b) Laboratory electric field Elab ∼ 100 V/cm along the z-axis Stark
shifts M = ±1 by ∼ 100 MHz. The aligned and anti-aligned molecule states correspond
to Ñ = ±1. The M = 0 states are unperturbed to a good approximation. (c) Laboratory
magnetic field Blab ∼ 10 mG along the z-axis Zeeman shifts M = ±1 by ∼ 1 kHz. Note that
gH < 0, so M = 1(−1) is shifted up (down). (d) Electric dipole moment interaction shifts
states in opposite directions when either M or Ñ is reversed, up to ∼ 100µHz. Note that
the electron spin is down for M = +1 and up for M = −1 since M is the projection of total,
rather than electron, angular momentum on the laboratory z-axis (since the total angular
momentum is predominantly set by the electronic orbital angular momentum, which points
against the electron spin in a 3∆1 state; see Sec. 2.1.6).
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molecular electric dipole moment in the molecule-fixed frame and Elab is the applied electric

field in the laboratory frame. In ThO, the relevant pair of opposite-parity states are those

that constitute the Ω-doublet in the H electronic state: ∆P = ∆Ω = 2π × 360 kHz.

The most significant consequence of the closely-spaced opposite-parity states in the H

electronic state of ThO is that the molecule can be “fully polarized” in modest laboratory

fields (provided M 6= 0). The “molecule-fixed” dipole moment has magnitude |DH | =

1.67(4) ea0 , where e is the electron charge and a0 is the Bohr radius. The dipole moment in

a given rotational level is DJ = DH
J(J+1) , which for J = 1 is D1 = h × 2.13(2) MHz/(V/cm)

in laboratory units [127]. Therefore, with only Elab =10 V/cm, the ratio |D1Elab|/∆Ω ≈

60 ≫ 1. This represents a significant technical advantage over atoms or molecules without

Ω-doublet structure, where full polarization is not achieved even with tens of kV/cm.

The H state level structure is shown in Fig. 2.1. We now introduce the quantum

number Ñ , which has value +1 when the molecule is aligned with the electric field (i.e.,

its energy is reduced due to Elab) and −1 when the molecule is anti-aligned (its energy is

increased)1. Since the molecule’s dipole moment, like the internuclear axis, points from the

negatively to the positively charged nucleus by definition, the Stark shift has the sign of

sign(HStark) = −D̂ · Ê = −n̂ · Ê ≡ −Ñ (i.e., when the Stark shift is negative, Ñ is positive).

Introducing the notation Ẽ ≡ Êlab · ẑ = ±1 to describe the state of the experiment at a given

time, we can therefore see that n̂ = +Ñ Ẽ ẑ when an H-state molecule is fully polarized2.

These conclusions can also be obtained from formal derivations of the Stark shift (e.g., [145,

146]). For reference, I reproduce the Stark shift formula here [146, Eq. 2.26]:

〈J,M,Ω; Λ, S,Σ|HStark|J,M,Ω; Λ, S,Σ〉 = −ElabD
MΩ

J(J + 1)
. (2.3)

Notice from this expression that there is no first-order energy shift to M = 0 states due to

the Stark interaction.

1. Throughout this thesis, a tilde denotes a quantity that can take values ±1, though sometimes the tilde
will be omitted when convenient.

2. Be wary of these, and other, sign conventions. For instance, Ch. 2 of Nick Hutzler’s thesis (generally
the best reference for detailed treatment of these issues) records the opposite sign from that written here,
but Fig. 5.1 therein is consistent with my expression [146].
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As an alternative to the approach used above, it is sometimes useful to express n̂ in

terms of Ω and M rather than Ñ . This can be done by formally deriving eigenstates in the

presence of an electric field (see [146, Ch. 2]), but it is also useful to obtain this relationship

by thinking through the geometry. Consider the two cases n̂ = ±ẑ separately, and take

J = 1, M = ±1 for simplicity. (Since there is no Stark shift when M = 0, the molecule

cannot be oriented in that case.) For n̂ = +ẑ, the total angular momentum projection M

along the lab z-axis is exactly the same quantity as Ω, the angular momentum projection

along the internuclear axis. Therefore, Ω = M in this case. When n̂ = −ẑ, the same

reasoning shows Ω = −M . Therefore, in either case Ω = M n̂ · ẑ = MÑ Ẽ , and n̂ = MΩẑ.

2.1.6 EDM interaction in the H state

Using the foregoing knowledge of molecular structure, we can now show how the EDM

interaction manifests in the H3∆1 state of ThO. First, notice that there are two valence

electrons in this state, S = 1. One of these electrons is in a σ orbital and experiences the

relativistic enhancement of the EDM interaction near the Th nucleus. The other electron

is in a δ orbital (analogous to an atomic d-orbital) and contributes both to producing the

Ω doubling and to causing the near-cancellation of the g-factor3. When we colloquially

speak of “the electron spin” in the EDM interaction, it is the spin of the electron in the

σ orbital that matters. However, since both spins are aligned with each other we need

not make this distinction carefully in practice. Just as for a free electron spin, we define

Hd = −~de · ~Eeff such that the average energy shift is Hd = −deEeff for a spin aligned with

the effective electric field in the H state of ThO. Note, however, that this Hamiltonian acts

on the molecular state (which includes both valence electrons) rather than a free electron.

To see the effect of the EDM interaction in terms of molecular and experimental quan-

3. As discussed in Sec. 1.2.5, this cancellation occurs because g ≈ gSΣ + gLΛ ≈ 2 × 1 − 1 × 2 = 0 for a
3∆1 state, where gS(L) is the g-factor of the electron spin (electron orbit).
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tities Ñ , Ẽ , J , and M , recall that ~Eeff = −Eeff n̂, so

Hd = −~de · ~Eeff

= +deEeff Ŝ · n̂

= +deEeffΣ

= −deEeffΩ.

(2.4)

We saw previously that Ω = MÑ Ẽ , so

Hd = −deEeffM × Ñ Ẽ (2.5)

in the H(J = 1) state.

There are two critical features of this Hamiltonian. (1) even though M is the projection

of the total molecular angular momentum J along the lab z-axis, Hd has almost the same

form as for a free electron where M would be the projection of the electron spin along

the laboratory z-axis. (2) By preparing the molecules in a state with a positive Stark shift

(Ñ = −1) vs. negative Stark shift (Ñ = +1), or by reversing the direction of the laboratory

electric field, Ẽ → −Ẽ , the sign of the interaction term can be reversed.

2.1.7 Coupling the molecules to laser light

All of our state preparation and readout depends on state-specific couplings to laser light.

We select electronic, vibrational, rotational, and Ω-doublet states by the frequency of laser

light, while we select the composition of M states using angular momentum selection rules.

We consider here the transition matrix elements involving the H state that are relevant

to the state preparation and readout steps of the ACME experiment. Although these are

standard molecular matrix element calculations, because they differ somewhat from atomic

calculations, I will walk through the logic in detail.

Of particular interest are states in the H(J = 1) manifold of the form

|ψ(φ), Ñ 〉 =
1√
2

(e−iφ|M = +1, Ñ 〉 + e+iφ|M = −1, Ñ 〉). (2.6)
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This state has the molecular dipole moment either aligned (Ñ = +1) or anti-aligned

(Ñ = −1) with the laboratory electric field, and has angular momentum aligned in the

xy-plane at an angle φ with respect to x̂. Under normal conditions (with Elab ∼ 100

V/cm), opposite-Ñ states are separated by ∼100 MHz and hence fully resolved by opti-

cal transitions, which have typical linewidths of a few MHz. In the ACME experimental

protocol, we only couple |ψ(φ), Ñ 〉 to states of the form |J = 1, M = 0, P̃〉 ≡ |P̃〉, where

P̃ = ±1 is the parity of the coupled state. (In particular, we address such states in both

the I and C electronic states’ rotational manifolds; see Fig. 2.2.) The E1 transition am-

plitude is proportional to 〈P̃|~ǫ · ~r|ψ(φ), Ñ 〉. We can compute this amplitude by decom-

posing the Hund’s case (c) excited state into its rotational state kets, |J, M, P̃ = ±〉 =

1√
2
(|J, Ω, M〉 ± (−1)J−Ω|J, −Ω, M〉), where J = 1, Ω = ±1, and M = 0 for the states of

interest: up to an arbitrary overall phase,

|P̃〉 =
1√
2

(|Ω = +1〉 + P̃|Ω = −1〉)|J = 1, M = 0〉. (2.7)

We now decompose |ψ(φ), Ñ 〉 in terms of the Ω quantum number and consider the matrix

element

〈P̃|~ǫ · ~r|ψ(φ), Ñ 〉 = 1
2(〈Ω = +1| + P̃〈Ω = −1|)〈J = 1, M = 0|)~ǫ · ~r

×(e−iφ|M = +1, Ω = +Ñ Ẽ〉 + e+iφ|M = −1, Ω = −Ñ Ẽ〉)|J = 1〉.
(2.8)

This matrix element involves one lab-frame vector, ~ǫ, and one molecule-frame vector, ~r.

This can be handled using the approach outlined in Brown and Carrington [158], but we

instead refer to the convenient formulas compiled in Nick Hutzler’s thesis [146, Ch. 2]. In

particular,

〈JMΩ; ΛSΣ|~ǫ · ~r|J ′M ′Ω′; Λ′S′Σ′〉 = δSS′δΣΣ′(−1)M
′−Ω〈Λ|T 1

Ω−Ω′(~r)|Λ′〉T 1
M ′−M(~ǫ)

×
√

(2J + 1)(2J ′ + 1)







J 1 J ′

−Ω (Ω − Ω′) Ω′













J 1 J ′

−M (M −M ′) M ′






,

(2.9)
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where δij is a Kronecker delta, T 1
M ′−M(~ǫ) is a rank-1 vector operator depending on ~ǫ, and

analogously for T 1
Ω−Ω′(~r). The factors in parentheses are three-J symbols. This matrix

element entails a selection rule ∆Ω = 0, ±1. In our case of interest, the ground state H

has Ω′ = ±1 and the excited state (C or I) has Ω = ±1, and the cross-terms between

Ω′ = ±1 → Ω = ∓1 must vanish. One then finds that

〈P̃|~ǫ · ~r|ψ(φ), Ñ 〉 ∝ e−iφT 1
+(~ǫ) + P̃e−iφT 1

−(~ǫ) (2.10)

for any ~ǫ.4 For linearly polarized light in the xy-plane with polarization angle θ with

respect to the x-axis, ~ǫ = cos θx̂+ sin θŷ, T 1
±(~ǫ) ∝ e±iθ and thus the transition probability

is proportional to cos2(φ − θ) when P̃ = +1 and sin2(φ − θ) when P̃ = −1. We therefore

write in the general case that the transition probability is cos2(φ− θ + π
4 (P̃ − 1)).

Consider the case of P̃ = +1 first. We refer to |ψ(φ = θ), Ñ 〉 as the “bright” state,

where the transition amplitude is maximized, and |ψ(φ = θ + π
2 ), Ñ 〉 as the “dark” state,

where the transition amplitude vanishes. When driving a transition to P̃ = −1, the role

of the dark and bright states reverses. Thus, changing P̃ has an equivalent effect on the

transition amplitudes as rotating the laser light polarization by π
2 .

2.2 Spin precession measurement

In Sec. 1.2.1, we described an archetypal EDM measurement in terms of Ramsey’s method

of separated oscillatory fields. The approach used in ACME actually deviates from this

method in key ways, so it will be treated explicitly here.

We want to probe the interaction Hamiltonian in the H(J = 1) state of ThO, Hd =

−deEeffM × Ñ Ẽ , where5 ~Eeff = −(78 GV/cm)n̂ in the relevant state of 232Th16O. For the

time being, we’ll take Ñ Ẽ = +1 so that Hd takes a simpler form, Hd → −deEeffM .

4. See Appendix A for the definition of, and handy identities for, the spherical basis and computations
with T 1

±.

5. ~Eeff is quoted here as the average of the latest calculations [161, 162]. Note that this is slightly smaller
than the value quoted in the first result paper [128], which used the result of [163]. The current theoretical
uncertainty in Eeff is estimated to be a few percent, which will only significantly inhibit the precision of an
EDM measurement once the mean value of de can be probed to two significant digits.
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2.2.1 A brief analogy to J = 1
2

We can understand the procedure used to measure the energy shift Hd in the ACME

experiment by briefly considering the analogous Zeeman shift, Hµ = −µ~s · ~B6, for a spin-

1/2 system. It is a fact unique to spin-1/2 objects that for any unit vector û = û(θ, φ)

parametrized by polar angle θ and azimuthal angle φ, there is a state |ψ(θ, φ)〉 that is an

eigenstate of the spin-component operator Sû. (For larger spins, an arbitrary state |ψ〉 is

described by more parameters than are needed to specify a unique spatial direction, and

therefore an arbitrary state |ψ〉 is not necessarily an eigenstate of any operator Sû.) In

particular, up to an overall phase,

|ψ(θ, φ)〉 = cos
θ

2
e−iφ/2|+〉 + sin

θ

2
eiφ/2|−〉, (2.11)

where I am using the shorthand |±〉 ≡ |M = ±1
2〉. Consider a state with θ = π

2 , corre-

sponding to a spin oriented in the xy-plane, or on the equator of the Bloch sphere:

|ψ(φ)〉 =
1√
2

(e−iφ/2|+〉 + eiφ/2|−〉). (2.12)

Under the influence of Hµ for a duration τ , the spin orientation will precess around the

polar axis: φ → φ+ µBτ . With this concept in mind, let’s examine the case of J = 1.

2.2.2 Phase measurement in J = 1

As we saw before, we want to observe the effect of the Hamiltonian Hd = −deEeffM acting

on the H(J = 1) state of ThO. By analogy to the J = 1
2 case, define |±〉 ≡ |M = ±1〉 and

consider the state

|ψ(φ)〉 =
1√
2

(e−iφ|+〉 + eiφ|−〉), (2.13)

so that evolution of the state under Hd produces an accumulation of the phase φ → φ +

deEeffτ over a duration τ . With the J = 1
2 case in mind from Sec. 2.2.1, it is tempting to

interpret this behavior in terms of the ~J vector precessing around the z-axis. However, that

6. For an electron, µ = −gSµB so that, e.g., 〈M |Hµ|M〉 = +gSµBMB for a z-aligned B field.
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is not what is going on.

As we noted previously, for a J > 1
2 system, not every state is an eigenstate of the

angular momentum operator along any particular axis. In particular, states of the form Eq.

2.13 have no angular momentum orientation at all: 〈ψ(φ)|Jx̂|ψ(φ)〉 = 〈ψ(φ)|Jŷ |ψ(φ)〉 =

〈ψ(φ)|Jẑ |ψ(φ)〉 = 0. Therefore, we should be extremely careful about importing too much

intuition from the simple case of a two-level system.

While |ψ(φ)〉 does not have any angular momentum orientation 〈Jû〉, it must have

components of angular momentum alignment, 〈J2
û〉, because 〈J2

x̂+J2
ŷ+J2

ẑ 〉 = J(J+1) = 2. In

particular, for the state in Eq. 2.13, we see that 〈J2
ẑ 〉 = 1, 〈J2

x̂〉 = cos2 φ, and 〈J2
ŷ 〉 = sin2 φ.

In other words, |ψ(0)〉 is aligned in the xz-plane and |ψ(π2 )〉 is aligned in the yz-plane.

When speaking of the angular momentum alignment for these states, we typically ignore

the component along the z-axis and simply say that |ψ(0)〉 ≡ |X〉 is “aligned along the

x-axis,” and |ψ(π2 )〉 ≡ |Y 〉 is “aligned along the y-axis.”

It turns out that for a system restricted to a subspace with J = 1, we can simultaneously

measure the alignment along both x̂ and ŷ, 〈J2
x̂〉 = cos2 φ and 〈J2

ŷ 〉 = sin2 φ, which each

independently provide information about the angle φ of the spin alignment in the xy-plane7.

With the geometric picture of a vector aligned in the xy-plane in mind, we can do this simply

by projecting an arbitrary state along either |X〉 or |Y 〉. Indeed, |〈X|ψ(φ)〉|2 = cos2 φ and

|〈Y |ψ(φ)〉|2 = sin2 φ. In particular, we project the molecular population onto the |X〉 state

with probability cos2 φ, and necessarily also project onto the orthogonal |Y 〉 state with

probability sin2 φ, by exciting molecules with laser light such that those in |X〉 emit a

fluorescence photon and those in |Y 〉 do not. If the number of total molecules were known

and every fluorescence photon were detected, this would enable us to determine cos2 φ, and

therefore φ, with minimum uncertainty. However, given experimental limitations such as

finite photon detection efficiency, it is possible to improve the estimate of φ by subsequently

exciting the molecules in |Y 〉 with a laser that causes them to emit fluorescence photons.

7. This result holds because of two facts. First, the operators Jx̂ and Jŷ cannot change an angular
momentum quantum number J when acting on an angular momentum eigenstate |JM〉. Therefore, it is

useful to define J
2(1)
x̂ and J

2(1)
ŷ to be the matrix representations of J2

x̂ and J2
ŷ acting on the restricted

subspace of angular momentum eigenstates with J = 1. Second, it turns out that these matrices satisfy
[J

2(1)
x̂ , J

2(1)
ŷ ] = 0. It follows that 〈J2

x̂〉 and 〈J2
ŷ 〉 can be simultaneously measured for a system restricted to

J = 1. The same reasoning holds, in fact, for J = 0 and J = 1/2, but not for any J > 1.
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Molecules that were originally projected onto |X〉 do nothing, while those that had been

projected onto |Y 〉 emit a fluorescence photon.

Following the approach just described, suppose that we project an ensemble of molecules

in state |ψ(φ)〉 onto either |X〉 or |Y 〉 and measure the average projected populations,

SX ∝ |〈X|ψ(φ)〉|2 and SY ∝ |〈Y |ψ(φ)〉|2. We can then construct the asymmetry

A =
SX − SY
SX + SY

= cos(2φ), (2.14)

where the RHS is the expected value of A. The denominator, SX + SY , normalizes for

the total number of molecules and detection efficiency (which typically fluctuate from mea-

surement to measurement). In the phase regime φ = ±π
4 + δφ where the sensitivity to

small changes in the phase, δφ, is maximized, we find A = ∓2δφ. In practice, experimental

imperfections lead to a slightly reduced sensitivity to small changes in the phase, which we

parametrize by the contrast C. We therefore write

A = ∓2|C|δφ. (2.15)

We want to measure δφ = deEeffτ , given the asymmetry A and some calibration of |C|.

Therefore, δφ = ∓ A
2|C| .

Returning briefly to the J = 1
2 analogy, note that 〈ψ(π2 )|ψ(0)〉 6= 0 in that system, so that

the method of alternately projecting the spin orientation along the x-axis and y-axis would

not work (or at minimum would need to be modified). Indeed, it is necessary in that case

to alternately project along, e.g., |ψ(0)〉 and |ψ(π)〉, but then the geometric interpretation

of measuring the alignment along orthogonal spatial (rather than Hilbert space) axes does

not apply. Finally, except in special cases where the total angular momentum is restricted

to a given value J ≤ 1, it is not generally possible to measure the spin alignment along the

x- and y-axes simultaneously (see discussion in Footnote 7). In this sense, our measurement

procedure can only be applied directly to systems restricted to a subspace with J = 1, and

one should be careful about leaning too much on analogies with simpler (or for that matter,
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Figure 2.2: Three representations of the ACME apparatus, in increasing abstraction from
top (photograph) to bottom. Components are approximately aligned in each subfigure.
Center shows cartoon version of the physical apparatus (minimally modified from a figure
by Brendon O’Leary); bottom shows molecular state, laser and field configurations, and
energy level diagrams for each stage (significantly modified from version by Adam West).
Detailed description in caption continued on next page (pages best viewed side-by-side in
print).
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Figure 2.2: Caption continued from previous page.

[Top panel] Photograph of the apparatus. (1.) A pulsed Nd:YAG ablation laser enters the
black enclosure to the left and is directed into the cryogenic “beam box” (blue vacuum chamber),
where it is incident on a ThO2 “target,” producing ThO gas. Neon gas entrains the ThO molecules
in a beam, travelling along x̂ from left to right. (2.) Up to three (typically two) optical pumping
lasers consolidate population to J = 0. (3.) The molecules enter the interaction region about 1.1
m from the ablation cell. In the photograph, the applied magnetic field coils are visible (white
frame), as well as the five sets of µ-metal “endcaps.” STIRAP laser beams travel vertically through
the left-hand black enclosure above the interaction region. The refinement laser passes through
the horizontal vacuum window on the left (green appearance due to anti-reflection coating) to
reproject the molecular state (4.) The ≈ 20 cm region between vacuum windows where molecules
freely precess in electric and magnetic fields. (5.) The detection region. Lasers pass through the
vacuum window on the right, exciting molecules that subsequently decay. The fluorescence photons
are collected and detected on photomultiplier tubes (PMTs). Molecules pass through end of the
interaction region and are pumped away to the right of the photograph.

[Center panel] Simplified schematic of the apparatus, not to scale. (1.) All radiation shield-
ing and cryopumping layers of the beam box are shown. (2.) The first two rotational cooling lasers
optically pump molecules in a field-free environment. The last rotational cooling laser operates in
an E-field applied along ŷ (brown plates). (3.) As the molecules enter the interaction region, they
are collimated by a square arrangment of razor blades. Vertical STIRAP lasers transfer population
to H and a horizontal refinement laser, passing through the field plates along ẑ, reprojects the
state. (4.) The molecules precess for ≈ 20 cm. (5.) Lasers with orthogonal polarizations stimulate
molecules to an excited state and fluorescence photons (green wavy arrows) are detected via
an array of lens doublets, each of which focuses light into bent light pipes. The photons are
subsequently detected in PMTs.

[Bottom panel] Top section shows laboratory coordinate system and the molecular state(s)
resulting from each stage of the experiment. Center section shows laser, external field, and spin
alignment configurations. Bottom section shows electronic energy levels and lasers used in the
experiment (left), and energy levels and transitions occurring in each stage. (1.) In the beam
source, molecules are produced in a variety of rotational (J) states, with black circles representing
the relative thermal populations. (2a.) Two overlapped lasers, stretched along ŷ, pump |J = 2, 3〉
to |J = 0, 1〉. (2b.) A single laser partially transfers |J = 1〉 to |J = 0〉 in the presence of an electric
field. All rotational cooling lasers travel along ±ẑ with alternating polarization and direction on
each pass. (3.) Two partially overlapped lasers, travelling along ŷ, transfer population from X → H

via STIRAP. Any imperfection in the spin alignment (double-headed arrow) is attenuated by the
refinement laser, travelling along ẑ, which optically pumps away the unwanted spin orientation via
the H → I transition. (4.) The molecules precess in electric and magnetic fields, accumulating
a phase φ. (5.) The phase is read out by detecting fluorescence photons via H → I ; X with
alternating laser polarizations in the H → I excitation lasers, travelling horizontally.
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more complex) systems.8

One last analogy can also be useful at times. Note that photons carry one unit of

angular momentum, analogous to a molecule with J = 1, but longitudinal polarizations do

not exist. Because of this restriction, the angular momentum of a molecular system in a

linear combination of states |J = 1,M = ±1〉 has a one-to-one correspondence with the

angular momentum of a photon, which is described by a linear combination of polarization

states |ǫ = ±1〉. Here, ǫ denotes the photon’s angular momentum projection along its

propagation axis.

2.3 Experimental apparatus

With the essential concepts of the ACME spin precession measurement in hand, we can

describe the components of the apparatus and the measurement procedure in more detail.

See Fig. 2.2 for a photograph of the apparatus, cartoon schematic, and diagram of energy

levels and field configurations in each stage. In each representation, we have labeled the

apparatus as consisting of five parts: (1) Buffer gas beam source; (2) Rotational cooling;

(3) EDM state preparation; (4) Spin precession; (5) State readout. I will describe each of

these stages in turn.

2.3.1 Beam source

For details of the buffer gas beam source, see [146, 152]; no significant modifications of the

beam source were made between ACME I and ACME II9. Briefly, we cool a copper cell to

∼ 16 K using a pulse tube refrigerator, and ablate a cylindrical “target” of ceramic ThO2

via a high-power pulsed laser (& 40 mJ/pulse, ∼ 15 ns pulse duration, 50 Hz repetition

8. Of course, a physical interpretation of what the molecular state is doing is entirely unnecessary, as long
as we can design a protocol that gives us a measurement of the EDM energy – which is certainly possible
for any J .

9. While the buffer gas source is generally quite robust, it does require regular maintenance, especially
replacing cells and ablation “targets” that generate our beam of ThO molecules – work made much less
convenient by the radioactivity of thorium. Furthermore, the high-power pulsed ablation laser requires
regular cleaning, flash lamp replacements, and repairs much more frequent than we would wish. Although
this was one of my particular roles on the experiment, there is little of novel scientific interest to describe in
this dissertation.
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rate). This produces a cloud of gaseous ThO (aalong with, almost certainly, several other

neutral and ionic species, which are not addressed by any of our lasers and therefore have no

significant effect on our experiment). During this time, neon is continuously flowed through

a fill line at the back of the cell and thermalizes with the 16 K copper walls. The neon,

which is at a much higher density than the ThO produced during ablation, thermalizes with

the ThO molecules and entrains them in a flow out of the ablation cell, creating a beam

of both neon and ThO. An “ion sweeper” downstream, consisting of two metal plates held

at a potential difference of 500 V, deflects any ions produced during ablation out of the

molecular beam.

The beam diverges with a half-angle on the order of ∼ 45◦ full-width-half-maximum

(FWHM). The central region passes through a “skimming” aperture, 6 mm in diameter,

while the rest of the beam sticks (“is cryopumped”) to the 4 K surfaces surrounding the 16

K cell. This is by far the lossiest step in our experiment: ultimately, only one in several

thousand molecules will reach the detection region due to molecular beam divergence.

2.3.2 Rotational cooling

The ThO molecules emerge from the buffer gas beam source overwhelmingly in their ground

vibrational and electronic state. However, their rotational tepmerature is ∼ 4 K, while

the spacing between energy levels is set by B = 0.333 cm−1 ∼ 0.5 K. As a result, the

first three rotationally excited states have significant fractions of the overall population

(> 10%). Therefore, after the ThO molecules ballistically exit the buffer gas beam source,

we optically pump the first three excited rotational levels to the rotational ground state,

enhancing the signal in a single quantum state by a factor of ≈ 2 − 2.510. I will describe

this optical pumping, which we refer to as “rotational cooling,” in much more detail in

subsequent sections. Briefly, we drive X(J = 2) → C(J = 1) ; X(J = 0) and X(J = 3) →

C(J = 2) ; X(J = 1), where → denotes a change of state by laser light and ; denotes a

change of state by spontaneous emission. The X(J = 1) population is subsequently driven

10. In practice, we typically optically pump only the first two excited states to avoid the technical in-
convenience of keeping an additional laser locked for the modest increase in signal due to the X(J = 3)
population.
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(partially) to the ground state by X(J = 1) → C(J = 1) ; X(J = 0).

2.3.3 State preparation

After the molecules are rotationally cooled, the molecular beam passes into the magnet-

ically shielded region of the apparatus that we refer to as the “interaction region” since

this is where we observe the interactions between the molecules and external electric and

magnetic fields. Here, five nested layers of mu-metal in a cylindrical geometry reduce the

magnetic field to at most a few hundred µG. Within the mu-metal shields, we have a set

of magnetic field coils that allows us to apply any average magnetic field, Bx, By, Bz, or

independent gradient ∂xBx, ∂yBy, ∂xBy, ∂xBz, ∂yBz, the other gradients being related to

these by Maxwell’s equations. The molecular beam is collimated by fixed razor blades

(square geometry with 24 mm side length) and passes between electric field plates made

from Corning 7980 OA glass coated with a 20 nm layer of indium tin oxide (ITO). The

plates are transparent and separated by 4.5 cm, allowing for horizontal laser beams to pass

through them as well for vertical laser beams to pass between them.

Before proceeding, it is useful to introduce a rigorously defined coordinate system. Let

ẑ ∝ 〈~Elab〉 lie along the average electric field experienced by the molecules between state

preparation and state readout (discussed shortly), while x̂ ∝ ~v − vz ẑ lies approximately

along the average molecular velocity but is constrained to be perpendicular to ẑ. This

uniquely defines ŷ = ẑ × x̂, approximately aligned with gravity. Under normal conditions,

the applied electric and magnetic fields are always aligned along or against ẑ. As seen

already, we specify the direction of the electric field by Êlab = (Êlab · ẑ)ẑ ≡ Ẽ ẑ. Analogously,

we specify the direction of the magnetic field by B̂lab = (B̂lab · ẑ)ẑ ≡ B̃ẑ.

STIRAP

After passing between the field plates, the molecules are coherently transferred from X(J =

0) to H(J = 1, M = ±1) via the intermediate state C(J = 0, P = −1) using the STImu-

lated Raman Adiabatic Passage (STIRAP) technique. The implementation of STIRAP was

led by Cris Panda; see [155] for full technical details, and Brendon’s thesis [149] for some

nice discussion, as well as Cris’s thesis (in preparation as of this writing). The two STIRAP
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laser beams travel vertically, along ŷ, and are focused along the x-direction to a waist size of

wx ≈ 150µm to achieve high intensities with the laser powers available, but extended along

the z-direction to address the entire molecular beam cross-section (≈ 25 mm). The laser

beams are partially overlapped along x̂ such that molecules first pass through the C ↔ H

laser (1090 nm, ∼ 10 W) and then through the X ↔ C laser (690 nm, ∼ 100 mW).

The molecules therefore experience a time-dependent intensity profile that looks like:

the C ↔ H laser turns on, the C ↔ H laser begins to turn off as the X ↔ C laser turns

on, and finally the X ↔ C laser turns off. The foolproof way to see how STIRAP works is,

as always, to write down the Hamiltonian and compute the time-evolution. In particular,

consider the three-level system |g1〉 = |X〉, |e〉 = |C〉, and |g2〉 = |H〉, with time-dependent

couplings (Rabi frequencies) Ωg1e(t) and Ωg2e(t) via laser light at frequencies ωg1e and ωg2e.

Then the Hamilton in the {|g1〉, |g2〉, |e〉} basis is

H =















Eg1 0 Ωg1e(t) cos(ωg1et)

0 Eg2 Ωg2e(t) cos(ωg2et)

Ω∗
g1e(t) cos(ωg1et) Ω∗

g2e(t) cos(ωg2et) Ee















. (2.16)

For a pedagogic discussion of STIRAP, and in particular how to use Eq. 2.16 to transfer

population from |g1〉 to |g2〉 without populating |e〉, see [164].

To help build some intuition for how STIRAP works in general, I will consider an ex-

tremely simple system, not quite describing the state preparation in ACME, where the

“ground states” |x〉 = |ψ(0)〉 and |y〉 = |ψ(π2 )〉 are degenerate substates of a J = 1 man-

ifold, of the form Eq. 2.13, and they are coupled to |e〉 = |J = 0〉 via laser light with

orthogonal linear polarizations, e.g., x̂ and ŷ. In this case, the transition matrix elements

are proportional to 〈e|~ǫ ·~r|g〉. If ~ǫ = cos θx̂+ sin θŷ is an arbitrary linear polarization vector

in the xy-plane, then the transition rate is proportional to |〈e|~ǫ ·~r|g〉|2 ∝ cos2(θ−φ): in par-

ticular, the state with angular momentum aligned with the polarization vector is “bright,”

while the state with angular momentum alignment perpendicular to the polarization vector

is “dark” (i.e., the transition rate vanishes).

Suppose we begin with a state |ψ(φ = 0)〉 = |X〉 and turn on laser light addressing the

dark state, θ = π
2 . Then the transition rate vanishes, cos2(θ − φ) = 0, and the population
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remains in the dark state. If we now rotate the laser polarization sufficiently slowly, θ →

θ + θ̇t, where θ̇ is the rate of polarization rotation, then the population remains in the

instantaneous dark state according to the adiabatic theorem [165, Ch. 10]11. When the

polarization has rotated by a full 90 degrees, so that θ = π, the dark state is parametrized

by φ = π
2 . In other words, the population is now in |ψ(π2 )〉 = |Y 〉 and complete population

transfer has been performed from |X〉 to |Y 〉, without ever populating an excited state.

Although we just described the STIRAP mechanism in terms of rotating the polarization

vector, θ → θ + θ̇t, one could equivalently consider the powers in the x̂-polarized and ŷ-

polarized components over time: ǫ̂x = cos(θ + θ̇t) and ǫ̂y = sin(θ + θ̇t). Starting at θ = 0,

this looks like we slowly ramp down the power of the x̂-polarized light as we ramp up the

power of the ŷ-polarized light.

In the ACME experiment, the “ground states” |g1〉 = |X〉 and |g2〉 = |H〉 are coupled to

|e〉 = |C〉 via laser light with different wavelengths (rather than different polarizations), but

otherwise the essential picture is unchanged. If we first address the |H〉 ↔ |C〉 transition,

and then slowly ramp down the |H〉 ↔ |C〉 as we ramp up the |X〉 ↔ |C〉 power, the

population will be adiabatically transferred from |X〉 to |H〉 without ever populating |C〉.

We have demonstrated transfer of ≈ 75% of the molecules into the H state using this

method.

Because the STIRAP lasers travel along ŷ, they can have polarization in the xz-plane.

We choose to polarize the 690 nm X ↔ C(P̃ = −1) laser along ẑ and the 1090 nm C(P̃ =

−1) ↔ H laser along x̂, which fixes the initial molecular population to be in the bright state

|ψ(φ = π
2 )〉 under ideal conditions, where P̃ denotes the parity of the C(J = 1, M = 0)

Ω-doublet that is addressed by the lasers. It would be possible to also implement STIRAP

via the intermediate C(P̃ = +1) state, but doing so would require the use of additional

acousto-optical modulators (AOMs), which entails power loss. Because the STIRAP lasers

(especially the 1090 nm C ↔ H laser) are not fully saturated, reducing the power further

would reduce the preparation efficiency and make the measurement scheme more susceptible

11. A careful application of the adiabatic theorem requires an energy splitting, ∆, between the bright and
dark states, satisfying ∆ ≫ θ̇. In the case considered here, this energy splitting would arise from the AC
Stark shift of the bright ground state (or Autler-Townes shift in the case of exactly resonant excitation).

46



to systematic errors that depend on the STIRAP two-photon lineshape.

State refinement

In practice, AC Stark shifts, coupled to other imperfections in our apparatus, can lead to an

unwanted component of the phase prepared during the STIRAP state transfer, |ψ(φ 6= π
2 )〉

(see Sec. 4.6 for details). As a result, we “refine” the molecular state, |ψ(φ)〉 → |ψ(π2 )〉12

in the manner described below. By controlling the frequency of the C ↔ H STIRAP laser,

we can populate either Ñ = ±1 manifold (separated in energy by ∼ 100 MHz due to the

Stark shift).

Immediately downstream of the STIRAP lasers, we reproject the spin orientation with

a 703 nm laser travelling horizontally through the field plates with linear polarization at

angle θprep, which drives H ↔ I(P̃ = +1), optically pumping away the component of the

STIRAP-prepared state along |ψ(φ = θprep)〉. Thus the dark state of the refinement laser,

|ψ(φ = θprep + π
2 )〉, is reliably prepared. In order to maximize the surviving population,

we align the polarization approximately along x̂, θprep ≈ 0. We tune the frequency of the

refinement lasers to address whichever Ñ manifold was prepared by STIRAP. We regard the

state prepared by the refinement (also referred to as “cleanup” or “preparation”) laser as

the initial state of the spin precession measurement. Just as with the STIRAP transition, it

would be possible to refine the molecular state via the H ↔ I(P̃ = −1) transition by using

additional AOMs, at the expense of a reduction in the refinement laser power. However, in

order to maximize the power available for state refinement, we have chosen not to implement

a refinement laser parity switch.

2.3.4 Spin precession

After the molecules have been prepared in |ψ(φ = θprep + π
2 )〉, they travel ballistically for

≈ 20 cm through the interaction region, where there is an approximately uniform electric

field ~E and magnetic field ~B. The molecular angular momentum alignment precesses with

12. As we will see, we need not prepare φ = π
2

exactly: what actually matters is simply that we prepare
a consistent phase φ prior to the spin precession stage of the measurement.
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frequency

ω ≈ ωµ + ωde

= −(gµBBB̃ + deEeffÑ Ẽ),
(2.17)

where g = −0.00440(5) in H(J = 1)[67], B ≡ | ~B| is the magnitude of the applied magnetic

field, and B̃ ≡ sign(B̂ · ẑ) = ±1 denotes the direction of the magnetic field, in analogy to Ẽ .

This induces the prepared state to evolve after a time τ ,13

|ψ(τ), Ñ 〉 =
1√
2

(e−i(θprep+ π
2

+ωτ)|+, Ñ 〉 + ei(θprep+ π
2

+ωτ)|−, Ñ 〉). (2.18)

The molecular velocity is typically ∼ 200 m/s; hence, the precession time is ∼ 1 ms.

However, due to variations in ablation conditions between molecular pulses, and velocity

dispersion within each pulse, τ may vary by several hundred microseconds.

2.3.5 State readout

As we described schematically in Sec. 2.2.2, we “read out” the state by alternately projecting

along orthogonal states. In particular, we use two lasers in the state readout region, ≈ 20

cm downstream of the refinement laser, addressing the H ↔ I(J = 1, M = 0, P̃) transition

where P̃ = ±1 may be chosen freely (unlike STIRAP and state refinement, where we only

use P̃ = −1 and P̃ = +1, respectively). Let us first excite molecules in |ψ(τ), Ñ 〉 via laser

light, travelling horizontally through the field plates, which has polarization θX ≡ θprep +δθ.

We refer to this as the X laser. Note that when the refinement laser is polarized along x̂ and

δθ = 0, the X laser is polarized along x̂ as well; however, in general the X laser may have

any linear polarization in the xy-plane. (For simplicity, we are neglecting the possibility of

laser beam misalignment, which would allow a component of the polarization along ẑ, and

polarization ellipticity.) This laser projects the molecules onto the bright state/dark state

basis. The molecules projected onto the bright state are excited to the short-lived I state,

which subsequently decays and emits a fluorescence photon for each bright-state molecule.

13. Most internal references in ACME handle the factors of e±iπ/2 by introducing a negative sign between
the two terms and absorbing the overall factor of i as an arbitrary phase. During this discussion, I have
chosen instead to always write the molecular state in a form that makes the angular momentum alignment
explicit in order to facilitate a physical interpretation.
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In particular, the projected population, and therefore fluorescence photon “signal,” is on

average proportional to

〈SX〉 ∝ cos2[(θprep + π
2 + ωτ) − (θprep + δθ) + π

4 (P̃ − 1)]

= cos2[ωτ − δθ + π
4 (P̃ + 1)].

(2.19)

We then excite molecules in the orthogonal state by exciting with laser light that has

polarization at angle θY ≡ θprep + δθ + π
2 , and the projected population is proportional to

〈SY 〉 ∝ cos2[(θprep + π
2 + ωτ) − (θprep + δθ + π

2 ) + π
4 (P̃ − 1)]

= sin2[ωτ − δθ + π
4 (P̃ + 1)].

(2.20)

Note the averaging notation 〈SX(Y )〉, which reminds us that in any given run of the

experiment the signals measured from the X and Y fluorescence might deviate from their

average values. We can point out a few important features already: the “global” polarization

angle θprep drops out entirely (except insofar as it couples to imperfections in the experiment

not considered here, or modulates the overal signal size SX+SY ). Only the precession phase

ωτ , relative to the angle between the preparation and readout bases δθ, and the parity of

the excited state P̃ can affect the relative strength of signals SX and SY . In particular,

changing P̃ from +1 to −1 or vice versa is equivalent to rotating the readout basis by π
2 .

This fact will be important in suppressing certain classes of systematic errors.

In a bit more detail, we spatially overlap the two lasers at polarization angles θX and

θY and alternately turn them on for 1.9µs at a time, switching between them at a rate of

200 kHz. We integrate the photoelectron signal (from detected fluorescence) over approx-

imately the duration that each laser is on, giving signals SX and SY . There is a 0.6µs

gap when neither laser is on, allowing the molecular population to decay away so that the

signal nominally from molecules excited by the Y laser has negligible contamination from

molecules that were previously excited by the X laser. The dead time between laser ex-

citation also prevents any coherent transfer between the bright states of each laser, which

would complicate the data analysis and possibly lead to systematic errors.

As discussed in Sec. 2.2.2, we construct the asymmetry A = SX−SY
SX+SY

, which normalizes
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against fluctuations in the total number of molecules, and removes any need to calibrate

the overall detection efficiency.. Then 〈A〉 = cos[2(ωτ − δθ + π
4 (P̃ + 1))]. Let us define

ωτ − δθ ≡ nπ ± π
4 + δφ, choosing the sign of ± and value of integer n such that δφ is

minimized (and in particular, δφ < π
4 strictly). Then 〈A〉 = ±P̃ sin(2δφ). We can always

set δθ in the experiment such that δφ ≪ 1, and then find

〈A〉 ≈ (±P̃)2δφ. (2.21)

For example, when ωτ ≈ +π
4 and we address P̃ = +1, δφ < 0 corresponds to a greater

expected signal SY (corresponding to molecules with angular momentum alignment closer

to that prepared by STIRAP) and thus a negative asymmetry.

In any particular run of the experiment, this relationship allows us to define the mea-

sured phase, δφm ≡ ±P̃ A
2 , so that the average value of the measured phase (defined in

this way) equals the true value, 〈δφm〉 = δφ. Note that due to statistical noise, the “mea-

sured” phase in any particular measurement will not precisely equal the actual phase of the

molecules.

In practice, we operate in one of two regimes: (1) at “low” magnetic field values, ωτ ≪ 1

and δθ ≈ π
4 ; and (2) at “high” magnetic field values, ωτ ≈ π

4 and δθ ≈ 0. Thus in the low

magnetic field regime, we choose the − sign in Eq. 2.21, while in the high magnetic field

regime, we choose the + sign, reversing the slope of asymmetry vs. phase deviation, d〈A〉
dδφ .14

Further, this slope is proportional to P̃, the parity of the excited state addressed by the

readout lasers. Finally, an additional way to reverse the sign of this slope is to rotate the

entire readout polarization basis by ±π
2 , effectively swapping the roles of the X and Y

lasers. In our formal treatment, this operation reverses the sign of the slope d〈A〉
dδφ because

it interchanges ± ↔ ∓ simultaneously with changing the value of n by one.

Thus the asymmetry contains information about small deviations in phase from a refer-

ence condition. We extract quantities of interest, such as de, by operating the experiment in

14. We will see later that it is useful to absorb the sign of this slope into a definition of the asymmetry
averaged over two experiment “states,” or settings of the experimental switches discussed in Sec. 2.5 such as
the direction of the applied electric and magnetic fields. Historically, an asymmetry with this sign absorbed
was referred to as the “B-corrected asymmetry” precisely because the magnitude of the magnetic field, B,
changes the sign of this slope.
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different conditions and observing a modulation in the extracted values of δφ. For example,

using the simplified expression for the precession frequency ω in Eq. 2.17, the EDM inter-

action can be obtained by measuring the asymmetry with both Ñ Ẽ = +1 and Ñ Ẽ = −1

and computing 〈A(Ñ Ẽ = +1)〉 − 〈A(Ñ Ẽ = −1)〉 ≈ −4deEeffτ . We will examine our exact

procedure for extracting physical quantities in more detail after considering all experimental

switches.

2.4 Experiment time scales

In this section, I will describe the time structure of our data. We record voltages from 8

PMT’s that encode a time-dependent molecular fluorescence. The signal has the following

structure, from the pulse timescale to longer timescales:

• An independent molecular pulse occurs every 20 ms. During each pulse, we save 10

ms of data from each PMT separately. The data from these PMT’s constitute a single

shot. 25 shots are averaged together to form a trace. Therefore, a trace takes 0.5 s

to record.

• Between traces, we change experimental parameters (Ñ , Ẽ , etc., described in Sec. 2.3).

A block consists of 64 traces with a degeneracy of 4 in each Ñ Ẽ θ̃B̃ state, and takes

approximately one minute to measure. The delay between traces varies depending on

which switches are performed.

• A superblock consists of 16 blocks, with a degeneracy of 2 in each P̃L̃R̃ state. A

superblock takes about 15 minutes to measure.

• Many superblocks (order tens) are measured within a run.

Each pulse has sub-structure as well.

• The trace has two main regions (see Fig. 2.3(b)):

– For the first ∼ 3 ms of a trace, no molecules are present in the interaction region.

We use this region of the signal to obtain a background measurement.
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Figure 2.3: Timescales of the ACME II measurement. Figure modified by Cris Panda
from version by Brendon O’Leary, and published in the ACME II result paper [156]. (a)
Fluorescence signals SX and SY over timescale of one polarization switching cycle. (b) The
envelope of a molecular pulse. (c) Block switches, required to extract a precession frequency
ω. (d) Superblock switches, used to search for and suppress systematic errors. (d) Changes
to the magnitude of the magnetic field, |B|, and “intentional parameter variations” (IPVs,
see 4.1). (f) Day-to-day changes in experimental conditions, the magnitude of the electric
field, |E|, and the magnetic field at which IPVs are measured, |BIPV|, throughout the ACME
II EDM dataset.
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– After 3 ms of background in the trace, the molecules begin to arrive. The pulse

envelope rises relatively sharply and has a long falling edge. The region of usable

molecules is ∼ 3 ms.

• Every 2.5 µs, the linear readout laser polarization is switched from X to Y or vice

versa, modulating the molecule signal. Each region with a fixed laser polarization is

a polarization bin, while a complete two-bin cycle constitutes a bin pair. Each bin

has three main features (see Fig. 2.3(a)):

– The beginning of each bin has a brief period (0.6 µs) in which no lasers are on,

so the signal is low. The laser then turns on, giving a sharp rise in signal.

– After a brief time, when the fluorescence rate is dominated by molecules that are

already Rabi flopping rather than entering the readout beam from upstream, the

signal decays exponentially with rate ∼ γ/2 because each molecule spends half

its time in the excited state.

– The readout laser is turned off again for 0.6µs at the end of the bin, and the signal

decays at rate γ. The “dead time” is set so that the total leftover fluorescence

measured in the following bin will be only ∼ 0.1% as large as the total signal in

that bin due to newly-excited molecules.

• The signal voltage from the PMT’s is acquired through a field-programmable gate

array (FPGA) data acquisition (DAQ) system, which records 80 samples per polar-

ization bin pair.

Additionally, there are two important timescales that depend on our choices in the data

analysis routine:

• Tens of bin pairs are combined to form groups. The main advantage of this is to form

an empirical uncertainty of a grouped quantity by checking the scatter in individual

quantities used to form the group. In addition, grouping data allows us to carry

around less data at once, speeding up the analysis. We vary the group size from

∼ 10–50 as a systematic check of the analysis routine.
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• A sub-bin consists of a well-defined region within a polarization bin that we consider

to have “good” fluorescence signal. We vary the size and position of the sub-bin as a

systematic check of the analysis routine.

2.5 Experimental switches

As we have seen, in order to extract physically meaningful quantities from the raw experi-

ment signals SX and SY , it is necessary to operate the experiment under multiple conditions

and compare the resulting changes in phase δφ from the “baseline” of δφ ≈ 0. In particular,

we perform four “block” switches, which are necessary in our data analysis routine to ex-

tract a precession frequency from measured asymmetries, and three “superblock” switches

on slower time scales, which suppress known and possible systematic errors. See Fig. 2.3

for the timescales of all regular switches.

The Ñ switch

Every 25 molecular pulses (every ≈0.5 seconds), we change which Ñ state is prepared by

STIRAP, refined in the preparation region, and addressed by the two readout lasers, by

tuning the frequencies of all lasers coupled to the H state manifold. This is the first of our

two “EDM switches,” which reverse the sign of the precession frequency associated with a

possible EDM.

The Ẽ switch

Approximately once for every four Ñ state reversals (i.e., 100 molecular pulses, ≈ 2 seconds),

we reverse Ẽ , the direction of the electric field applied by the field plates in the interaction

region, by reversing the voltage on each plate. This is the second “EDM switch.” Note that

the sign of the EDM contribution to the precession frequency reverses when either Ñ or Ẽ

is changed, but not when both are changed simultaneously.

54



The θ̃ switch

Approximately once for every four Ẽ state reversals (i.e., 400 molecular pulses, ≈ 10 sec-

onds), we reverse θ̃, which modulates the relative angle between the readout and polarization

bases, δθ = δθ0 + ∆θθ̃. Here, δθ0 ≈ 0 or π
4 , depending on the strength of the magnetic field

(and thus whether ωτ ≈ 0 or ωτ ≈ π
4 due to Zeeman precession). We typically set ∆θ = 6◦

by adjusting the angle of a half-wave plate that both readout lasers pass through before

entering the interaction region15. See [147, Sec. 6.3.2] for an analysis of the optimal step

size.

The purpose of this switch is to enable us to measure the sensitivity of the asymmetry

to small changes in phase. Recall that we defined δφ by ωτ − δθ ≡ nπ ± π
4 + δφ, so that

〈A〉 ≈ ±P̃ 2δφ. However, this equation only holds for the ideal case previously considered.

Even with perfectly controlled precession frequencies ω, our molecular beam emerges with

a spread in velocities ∆τ , which results in a spread in precession phases ∆φ = ω∆τ . This

spread in precession phases leads to a reduced sensitivity to the average accumulated phase

ωτ̄ , where τ̄ is the average molecular precession time probed [144, Sec. 2.2.2].

When we take into account the applied polarization dither ∆θ, we instead define ωτ̄ −

δθ0 ≡ nπ ± π
4 + δφ, in which case 〈A(θ̃)〉 = ∓2C(δφ − ∆θθ̃), where C is the measurement

“contrast,” generically with |C| < 1. With precise control of ∆θ and measurements of both

θ̃ states, we can infer the contrast C by 〈A(θ̃ = +1) − A(θ̃ = −1)〉 = ±4∆θ × C. This

procedure will be elaborated upon in Sec. 3.1.

The B̃ switch

Approximately once for every two θ̃ reversals (i.e., 800 molecular pulses, ≈ 30 seconds), we

reverse B̃, the direction of the applied magnetic field field with respect to ẑ. The primary

purpose of this switch is to reverse the Zeeman interaction, ωµ = −gµBBB̃ =
φµ

τ , allowing

us to determine the precession time τ and therefore compute precession frequencies ω from

measured phases φ. The exact means of extracting all quantities of interest will be discussed

15. You are warned that factors of two can be confusing here: the polarization angle changes by twice
the waveplate rotation, and of course the total range over which the polarization changes is twice the “step
size” ∆θ.
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in Sec. 3.1. Note that the Ñ , Ẽ , θ̃, B̃ switches occur in a “block,” which is the minimal set

of data required to compute a precession frequency given our switch sequence.

The P̃ switch

Approximately once for every two blocks (i.e., 3200 molecular pulses, ≈ 2 minutes), we

reverse P̃ , the parity of the excited state addressed by the readout lasers. Recall that this is

equivalent to rotating the relative angle between the readout and preparation laser polariza-

tion bases by π
2 . This operation therefore removes “asymmetry effects,” described in more

detail in Sec. 4.12, which appear in our measurement as an asymmetry due to imbalances

between the X and Y readout beams. For example, suppose we were to systematically

acquire more light from the X laser due to optical scatter into our photodetectors. Then

the asymmetry, A = SX −SY
SX +SY

, would have a positive contribution even when φ = 0 due to

SX > 0. However, if we interchange the roles of the X and Y lasers, then SX ↔ SY and the

asymmetry will have a negative contribution due to the spurious signal. (In fact, the “roles”

of X and Y are distinguished implicitly by the sign of the contrast; this will be explained

in more detail in Sec. 4.12.) Therefore, these “asymmetry” effects, unrelated to the actual

molecular phase, can be identified and removed by comparing data in the P̃ = ±1 states.

The L̃ switch

Every four blocks (i.e., 6400 molecular pulses, ≈ 2 minutes), we reverse L̃, which denotes

the correspondence between which of the two voltage supplies is connected to which of the

two field plates. In particular, let us denote the supplies by 1 and 2, and the field plates

by E and W (for east and west). In L̃ = +1, the connections are 1→E and 2→W, while

in L̃ = −1, the connections are 1→W and 2→E. Further, when changing the L̃ state, we

reverse the nominal voltage on each power supply to keep the applied electric field in the

apparatus unchanged (i.e., if supply 1 is at positive voltage, then we switch it to negative

voltage). The switch is implemented via mercury-wetted relays controlled by TTL pulses.

Notice that the L̃ switch should ideally have no effect on the apparatus. However, if

there are non-reversing voltages associated with one or the other power supply, then this

will create an electric field contribution in the apparatus that does not switch with Ẽ (which
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is implemented by reversing the applied voltage on the supplies). For example, if supply 1

is at voltage 100.1 V in the nominal Ẽ = +1 state but at −99.9 V in the nominal Ẽ = −1

state, then the non-reversing component of the applied voltage is 0.1 V. However, when we

switch the correspondence between the power supplies and the field plates, i.e. in L̃ = −1,

the non-reversing component of the applied voltage becomes −0.1 V.

Because non-reversing voltages correspond to non-reversing electric fields, which could

contribute to systematic errors in the EDM measurement, we need to be able to remove

any contributions to the measured precession frequencies arising from power supply voltage

offsets. By comparing data in the L̃ = ±1 states, we can identify these contributions and

remove them in the data analysis. Note that under normal conditions in ACME II, the L̃

switch has no statistically significant effect on our EDM measurement, as we would expect

in the ideal case (i.e., we could have run without it and our results would still be valid).

The R̃ switch

The last “superblock” switch in ACME II is the R̃ switch, which rotates the readout polar-

ization basis by π
2 via mechanically rotating a waveplate that both X and Y laser beams pass

through. This provides an additional method, independent of the P̃ switch, of interchanging

the roles of the X and Y beams to remove “asymmetry effects.”

Omission of the G̃ switch

I would like to briefly comment on the absence of one superblock switch that was used in

ACME I, namely the G̃ switch. In ACME I, this switch rotated both the preparation and

readout polarization bases by π
2 . As discussed in 2.3.5, this should – and did – have no

effect on measured quantities.

In ACME II, this switch cannot be straightforwardly implemented because STIRAP can

only prepare an angular momentum alignment approximately along ŷ. Therefore, rotating

the preparation (refinement) laser polarization basis by π
2 would completely eliminate our

experimental signal. One alternative method of implementing an analogue of the G̃ switch

is to drive STIRAP through P̃ = +1 instead of P̃ = −1 in order to prepare the angular

momentum state aligned with x̂, and simultaneously rotate the refinement laser polarization
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by π
2 . We ultimately rejected this approach because it would significantly increase the

experimental complexity and require laser powers beyond available levels (since the ability

to address the opposite P̃ state in the preparation would require additional AOMs, and

corresponding laser power losses). Because we have no model in which the G̃ switch would

have suppressed systematic errors, and it was observed to be extraneous in ACME I, we

are confident that omitting this switch does not pose any challenge to the validity of our

results.

Systematic error checks

On slower timescales, during both “normal” EDM data and during our campaign to search

for systematic errors (prior to the published EDM dataset), we modify any one or several of

a variety of experimental parameters, including the magnitude of the electric or magnetic

fields, laser detunings, laser powers, transverse magnetic fields Bx,y, magnetic field gradients

∂iBj , etc. In keeping with the nomenclature for faster switches, we sometimes call these

“uberblock” switches. The full list, and effects, of parameter adjustments will be considered

in detail in Ch. 4.

2.6 Rotational cooling in detail

This section will consider the theory and implementation of rotational cooling in much

greater detail than Sec. 2.3.2. Preliminary considerations of the rotational cooling scheme

for ACME II were explored by Brendon O’Leary [166].

As mentioned previously, we use optical pumping to consolidate molecules in a single

quantum level, X(J = 0), before transferring them to the H3∆1 science state. It is not

necessary to vibrationally cool, so all references to X-state molecules refer to X(v = 0).

Rotational cooling16 is achieved by optically pumping through the electronic C state. This

section describes our considerations when selecting an optical pumping scheme and provides

16. The prepared states do not follow a thermal distribution, so there is not a well-defined rotational
“temperature” achieved by rotational cooling. However, there is a reduction in the entropy associated
with the internal state distribution, which is physically allowed due to the dissipative effect of spontaneous
emission.
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the methods of calculation used to estimate the ideal efficiency of transfer to the rotational

ground state. The observed efficiency is in reasonably good agreement with the calculations,

but slightly lower as generically expected.

This section is structured as follows: first, I compute the distribution of molecules among

J states within the X(v = 0) manifold assuming thermal equilibrium. Then, I estimate the

branching ratio for decays C(v = 0) ; X(v = 0) based on the Franck-Condon factor

and estimated electronic dipole matrix elements. I compute branching ratios for different

transitions J ; J ′. (In this section, primes always denote ground states. Unprimed states

typically refer to excited states, but may also refer to ground states when the electronic

state is unambiguous). Two rotational cooling schemes are then described and I estimate

the efficiency of the cooling, defined as the total fraction of X(v = 0) molecules ending up

in J = 0.

Rotational cooling to higher rotational levels (e.g., J = 1) would generally be less

efficient because we can only extract population from a single magnetic sublevel using

STIRAP X → C → H. Due to geometric constraints, we cannot apply a well-defined

quantization axis (i.e., external electric or magnetic field) throughout the region between

rotational cooling and the interaction region, so we expect the magnetic sublevels to remix

while the molecules travel from the rotational cooling region into the interaction region. As

a result, the rotational cooling efficiency cannot possibly exceed 1/(2J + 1) for cooling to

rotational level J . Since the cooling to J = 0 is estimated to result in efficiencies greater

than 1/3 ≥ 1/(2J + 1) for J ≥ 1, it is not worthwile considering cooling to any other

rotational levels.

2.6.1 Initial population distribution

The initial rotational population is assumed to be thermally distributed at temperature T .

The rotational energy of a state with angular momentum J is given by J(J + 1)BR, where

BR = 0.33264 cm−1 in the X state of ThO [160]. The degeneracy of the J manifold is

(2J + 1). The normalized initial population in level J is therefore
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J P 0
J (%)

0 12
1 27
2 28
3 19

4+ 14

Table 2.1: Initial rotational distribution for T = 4 K

P 0
J =

1

Z
(2J + 1) exp

[

−J(J + 1)
BR
kBT

]

, (2.22)

where the normalization
∑

J P
0
J = 1 is enforced by the partition function Z =

∑

J(2J +

1) exp
[

−J(J + 1) BR
kBT

]

. An example population distribution is shown in Table 2.1 at T = 4

K. Internal measurements [167, 168] and published data [152] are consistent with rotational

temperatures in the range of 3-6 K, with somewhat more evidence toward the lower end of

the range (3-4 K). In this document, I will take T = 3 − 4.5 K to be a reasonable working

range.

2.6.2 Branching ratios

The following approach to computing branching ratios is described clearly in [169, Sec. 6.5].

In the Born-Oppenheimer approximation ([170], English translation [171]), we approximate

a total energy eigenstate of a molecule by the product of electronic, vibrational, and rota-

tional eigenstates, |Ψ〉 = |Ψ〉E|Ψ〉V|Ψ〉R. The transition strength between two states |Ψ〉

and |φ〉 is, to leading order, proportional to the square of the dipole matrix element 〈φ|µ|Ψ〉.

Assuming the transition under consideration is between distinct electronic energy levels, the

nuclear dipole moment matrix element vanishes and 〈φ|µ|Ψ〉 = 〈φ|µe|Ψ〉, where µe is the

electronic dipole moment qere. Working in this special case, we simply write µ in place of

µe for everything that follows.

The unnormalized transition strength can then be factored into

|E〈φ|µ|Ψ〉E|2 × |V〈φ|Ψ〉V|2 × S, (2.23)
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where |V〈φ|Ψ〉V|2 is a Franck-Condon factor and S is a “rotational line strength” or “Hönl-

London factor.”

Electronic branching

To determine the efficiency of rotational cooling, we need to know the branching ratio from

C(v = 0) ; X(v = 0). We can first crudely estimate the branching ratio for C(v = 0) ; X

and then find the proportion that land in the v = 0 ground-state manifold using Franck-

Condon factors.

The C state has a higher energy than the X, H, Q, A, and B states. We first expand

these states in terms of a series of molecular term symbols, corresponding to a Hund’s case

(a) basis [159].

C = 0.77 1Π1 + 0.20 3Π1 + 0.02 3∆1

X = 1Σ+
0

H = 0.98 3∆1 + 0.01 3Π1 + 0.01 1Π1

Q = 0.94 3∆2 + 0.04 1∆2 + 0.02 3Π2

A = 0.95 3Π0 + 0.05 1Σ+
0

B = 0.77 3Π1 + 0.18 1Π1 + 0.05 3Σ1

We must remember to take the square root of these coefficients when expanding molecule

states, e.g., |C〉 =
√

0.77|1Π1〉 +
√

0.20|3Π1〉 +
√

0.02|3∆1〉, to ensure that the states are

properly normalized.17 Relative phases between terms are assumed to be unimportant. We

are not able to precisely calculate the electric dipole matrix elements between the C state

and final electronic states f , so we assume that all allowed transitions have comparable

matrix elements. Transitions are forbidden when they would (1) change the total spin (e.g.,

S = 0 ↔ S = 1); (2) change the spin projection (e.g., Σ = 0 ↔ Σ = 1); (3) or violate

angular momentum conservation (e.g., when Λ = 0+ ↔ Λ = 0− or |∆Λ| > 1, and likewise

for Σ,Ω). A table of forbidden transitions from the components of the C state is given in

Table 2.2.

17. Beware that this point is neglected in [166], leading to a discrepancy with the results below.
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1Π1
3Π1

3∆1

1Σ+
0 X 1 12

3∆1 12 2 X
3Π1 1 X 2
1Π1 X 1 12
3∆2 1 X 2
1∆2 X 1 12
3Π2 12 2 3
3Π0 12 2 X
3Σ1 12 2 3

Table 2.2: Forbidden transitions are marked by the selection rule(s) they violate. Allowed
transitions are indicated by X.

We then estimate the electronic overlap using the composition of each state and the

allowed transitions. As an example, C ; Q has allowed contributions

√

(0.77)(0.04)
[

1Π1 ;
1∆2

]

+
√

(0.20)(0.94)
[

3Π1 ;
3∆2

]

= 0.61. (2.24)

Repeating this calculation for each possible decay from C, we can obtain the overlap |〈f |C〉|2

for each state f . The decay rates are proportional to these overlap factors (up to slight

differences in the transition dipole moments, which we don’t know) and to ω3, where ω is the

angular frequency of the transition (e.g., see [172, Sec. 3.3]). The relative probability of a

branching C ; f is then approximately ω3
f |〈f |C〉|2/∑k

[

ω3
k|〈k|C〉|2], with the denominator

for normalization. These branching ratios are computed in Table 2.3 and are consistent

with the values computed in [148]. Transition frequencies can be found in [160].

A crude lower-bound estimate of the branching ratio to a given state is computed as-

suming that the dipole operator for that transition is 25% smaller than in the “default” case

(where all allowed moments are assumed equal) and that all other dipole operators are 25%

larger. Likewise, an upper-bound estimate is computed assuming that the dipole operator

for that transition is 25% larger than in the default case while other dipole operators are

25% smaller. These estimates clearly do not constitute hard bounds. In fact, as we’ll see,

the efficiency of rotational cooling is consistent with the lowest end of this branching ratio,

62



|f〉 |〈f |C〉|2 ω (cm−1) Computed branching (%) Range (%)

X 0.77 14490 88.0 73-95
H 0.09 9174 2.7 1-7
Q 0.37 8362 8.2 3-20
A 0.13 3890 0.3 0.1-0.8
B 0.58 3361 0.8 0.3-2.3

Table 2.3: Electronic branching ratios from C

and we can infer that larger uncertainties may be warranted.18

Vibrational branching

The vibrational contribution to branching ratios is given by Franck-Condon factors, which

express the degree to which the nuclear wave functions overlap between two states. Calcula-

tions of Franck-Condon factors can be performed by treating nuclear wave functions in the

harmonic oscillator approximation provided rotational and vibrational constants are known.

However, at present we only need to know the vibrational branching C(v = 0) ; X(v = 0)

among all C(v = 0) ; X decays, which can be calculated from well-known molecular con-

stants to be 84%, based on a simple Morse potential model [173]. We therefore expect the

total branching ratio C(v = 0) ; X(v = 0) to be in the range 61-80%, with a best guess

at 74%.

Note that the Steimle group has measured the branching ratio for I(v = 0) ; X(v = 0)

to be 91%, which is better than the best possible branching ratio for C(v = 0) ; X(v = 0)

[174]. Since the I state also has |Ω| = 1, its rotational structure is identical to that of C.

Therefore, the scheme discussed here could be applied to the I state by changing the laser

wavelengths. As discussed in Sec. 2.6.5, this is a compelling option for future experiments,

but we are unlikely to pursue it due to the increased effort required and merely marginal

improvement over rotational cooling through C.

18. The full story of these branching ratios is, unfortunately, confusing. Earlier optical pumping measure-
ments by Emil Kirilov and Cristian Panda appeared to be consistent with an electronic branching ratio closer
to ∼ 85%, while very careful direct measurements of the branching ratio by Daniel Ang are around 65%
(assuming the previously measured Franck Condon factor of 84%, discussed below). My take-away is that
the direct branching ratio measurements, consistent with our ACME II rotational cooling data, probably
give the most reliable value in the range of ∼ 65 − 75%.
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Zero-field rotational branching ratios

Like atoms, molecules primarily decay through E1 transitions for which the effective inter-

action Hamiltonian is ~E · ~µ, where ~E is an electric field and ~µ is a transition dipole moment.

In spontaneous decay, the effective electric field ~E arises due to vacuum fluctuations, and ~µ

is a function of the electronic state but doesn’t depend on the molecular rotation.

We have already considered such matrix elements in Sec. 2.1.7. The rotational line

strength SM for decay from a particular excited sublevel |J, Ω, M〉 is given by

SM ∝ ∑

M ′ |〈J, M, Ω; Λ, S, Σ|~E · ~µ|J ′, M ′, Ω′; Λ′, S′, Σ′〉|2

∝ (2J + 1)(2J ′ + 1)







J 1 J ′

−Ω (Ω − Ω′) Ω′







2

×∑M ′







J 1 J ′

−M (M −M ′) M ′







2

,

(2.25)

where I retained only factors that depend on rotational quantities. The remaining sum

reduces to 1/(2J + 1)19. This leads to

SM ≡ (2J ′ + 1)







J 1 J ′

−Ω (Ω − Ω′) Ω′







2

, (2.26)

where I am now defining SM such that the constant of proportionality in Eq. 2.25 is unity.

This result doesn’t depend on M , consistent with the rotational symmetry of spontaneous

decay. More conventionally, rotational branching ratios are given by Hönl-London factors,

defined as S ≡ ∑

M SM = (2J + 1)SM . I give Hönl-London factors normalized over all

decays in Table 2.4.

19. An internal ACME document, [175], contains the detailed calculation.
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Final J = 1 J = 2

Lost 1 − ℓ 1 − ℓ

J ′ = 0 (2/3)η0ℓ

J ′ = 1 (1 − η0)ℓ (3/5)ℓ
J ′ = 2 (1/3)η0ℓ

J ′ = 3 (2/5)ℓ

Table 2.4: Normalized Hönl-London factors used in rotational cooling. Primed rotational
levels are in the ground state. The value of η0 depends on the parity addressed in the
excited state and on the electric field (see Sec. 2.6.2). The parameter ℓ describes loss to
other vibrational or electronic states (see Sec. 2.6.3). It is assumed that decays from J = 2
occur from the even-parity state in the absence of an electric field.

Rotational branching in an applied electric field

An applied electric field mixes parity states, which modifies the Hönl-London factors. How-

ever, in the absence of any external fields, the Hamiltonian of the molecule commutes with

the parity operator, and so the eigenstates of the Hamiltonian have fixed parity. We will

consider the effect of an external electric field shortly, but first consider a case where the

initial manifold involves superpositions of states with definite parity,

|J ΩM〉 = aM,+|J, Ω, M, +〉 + aM,−|J, Ω, M, −〉, (2.27)

but the final state has definite parity p′. The Hönl-London factor is effectively modified by

a factor of |aM,−p′ |2 since E1 transitions connect only opposite-parity states. The effective

Hönl-London factor from a sublevel M is then

SM = (2J ′ + 1)







J 1 J ′

−Ω (Ω − Ω′) Ω′







2

|aM,−p′ |2. (2.28)

The X1Σ0 state has opposite-parity states separated in energy only by the rigid-body

molecular rotation (∼ 20 GHz), so that there is negligible parity mixing. However, the C

state, predominantly 1Π1, has Ω-doublet states split by 50.4 MHz, which are fully mixed

in applied electric fields of Elab ∼ 100 V/cm [145]. Therefore, consider the situation where

an electric field may significantly mix parity states in the C manifold but not in the X

manifold. The effect of an electric field on parity mixing is described in [145, Sec. 3.1].
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Given a zero-field energy splitting ∆Ω, dipole moment matrix element D, electric field E ,

and parity eigenstates |e〉 and |f〉, the perturbed eigenstates can be written as

|ẽ〉 = cos θ2 |e〉 + sin θ
2 |f〉

|f̃〉 = − sin θ
2 |e〉 + cos θ2 |f〉

(2.29)

where

θ = arctan(βM),

β = − 2DE|Ω|
∆ΩJ(J+1) .

(2.30)

It follows that the parity components in an electric field have magnitudes

|〈s′|s̃〉|2 =
1

2

(

1 ± 1
√

1 + β2M2

)

, (2.31)

where s = e, f and the positive sign applies with the positive sign applies for the component

present when E = 0 (e.g., s′ = e when s̃ = ẽ) and the negative sign applies otherwise.

Inserting this result into the expression for the mixed-parity branching ratio, we see that

SM =
1

2
(2J ′ + 1)







J 1 J ′

−Ω (Ω − Ω′) Ω′







2
(

1 ± 1
√

1 + β2M2

)

. (2.32)

I define φ(β, M) ≡ 1/
√

1 + β2M2 and note that φ ∈ [0, 1]. Therefore, the 0-field, parity-

allowed Hönl-London factors are modified by a multiplicative factor of η± = (1/2)(1 ±φ) ∈

[0, 1], where η− corresponds to decays disallowed in 0 field and η+ corresponds to decays

allowed in 0 field. Note that η± = 1 − η∓.

Magnetic branching ratios

To compute the branching ratios from a given excited sublevel to the sublevels in a particular

rotational manifold, Clebsch-Gordan coefficients (or equivalently, 3-j symbols) may be used

as usual. If we’re only interested in the distribution among ground state sublevels that a

given excited sublevel M decays to, then we can ignore any effect of parity mixing.
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Figure 2.4: Rotational cooling scheme used in ACME II. (a) First step of rotational cooling,
with E = 0. Transfer J ′ = 2, 3 to J ′ = 0, 1. (b) Second step of rotational cooling, with
E > 0. Transfer J ′ = 1 to J ′ = 0. Decays to J ′ = 2 also occur. (c) Magnetic sublevels
in second step of rotational cooling, with M = ±1 and M = 0 addressed by distinct laser
polarizations (ẑ and x̂, respectively).

2.6.3 Rotational cooling scheme

Step 1: Pumping to J ′ = 0, 1

A diagram of both rotational cooling steps is shown in Fig. 2.4. In the first step of the

rotational cooling scheme, shown in panel (a), we pump X → C using J ′ = 3 → J = 2 and

J ′ = 2 → J = 1 with no applied electric field. The parity of the X state is p′ = (−1)J
′
,

while there exists a parity doublet in the C manifold. By parity selection rules, the excited

states addressed by the lasers have parity p = (−1)J . Therefore, decays J = 2 ; J ′ = 2

and J = 1 ; J ′ = 1 are forbidden. As a result, the only allowed decays to the X state are
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J = 2 ; J ′ = 1, 3 and J = 1 ; J ′ = 0, 2. Molecules that land back in J ′ = 2, 3 are excited

again. Let the fraction decaying from the excited state back to the X(v = 0) manifold be

ℓ. We expect ℓ ≈ 0.75 as described in Sec. 2.6.2. The branching ratios are then given in

Table 2.4 with η0 = 1.

Pumping with a given polarization will result in dark states. For example, any su-

perposition of magnetic sublevels |M ′ = ±J ′〉 is dark when pumping J ′ → J = J ′ − 1

with ẑ-polarized light. However, these states are not dark when pumping with x̂-polarized

light.20 To eliminate all dark states, we switch between x̂- and ŷ-polarized pumping light

in the first step (note that the lasers travel along ẑ).

Any given molecule that is not lost during the pumping process is only transferred

among three rotational states (namely, J ′ = 1, 3 and J = 2, or J ′ = 0, 2 and J = 1). Let

the probability of decay to the initial state be pi and the decay to the target state be pt.

Note that these sum to the branching fraction ℓ < 1 for C(v = 0) → X(v = 0). Then the

probability of transfer to the target state is

P (i → t) = pt + pi · pt + p2
i · pt + · · · , (2.33)

where the n-th term represents an event where the molecule is transferred after the n-th

excitation from i. This can be computed as a geometric series,

P (i → t) = pt

∞
∑

n=0

pni =
pt

1 − pi
. (2.34)

Referring to Table 2.4 for branching ratios pi and pt, we can compute the transfer

efficiencies for J ′ = 3 → J ′ = 1 and J ′ = 2 → J ′ = 0. Recall that the initial population in

rotational level J ’ is denoted by P 0
J ′ ; in general, we will label the population after step n

by PnJ ′ . Then the populations in J ′ = 0, 1 after step 1 are given by

20. One can always compute the matrix elements directly, but an alternative way to see this is to note
that an arbitrary dark state of ẑ-polarized light is (a| + J〉 + b| − J〉). However, Jx(a| + J〉 + b| − J〉) is some
superposition of |J − 1〉 and | − J + 1〉, and the subspace of dark states of ẑ-polarized light is not closed
under Jx. By rotational symmetry, the dark states of x̂-polarized light should form a closed subspace under
Jx just as the dark states of ẑ-polarized light form a closed subspace under Jz. Therefore, the dark states of
ẑ-polarized light can’t also be dark states of x̂-polarized light. Likewise, x̂- and ŷ-polarized light can’t give
rise to the same dark states.
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P 1
J ′=0 = P 0

J ′=0 + (2/3)ℓ
1−(1/3)ℓ P 0

J ′=2

P 1
J ′=1 = P 0

J ′=1 + (3/5)ℓ
1−(2/5)ℓ P 0

J ′=3

(2.35)

Step 2: Empty J ′ = 1

At this point, we would ideally like to transfer all molecules from J ′ = 1 to J ′ = 0. Since

C is an |Ω| = 1 state, there is no C(J = 0) level. Therefore, we must pump through J = 1.

Since J ′ = 1, 0 have opposite parities, we must apply an electric field to mix the parity of

the J = 1 excited state in any two-photon transfer process.

Further, assume that the M = 0 sublevel is spectroscopically resolved from the M = ±1

levels due to Stark splitting. We address the M = ±1 states21. Due to the spectroscopic

resolution, the ground M ′ = ±1 states are dark to both x̂- and ŷ-polarized light (which only

couple to M = 0, ∼ 100 MHz off resonance), so we switch between x̂- and ẑ-polarized light.

These have dark states M ′ = ±1 and M ′ = 0, respectively. This step is shown schematically

in Fig. 2.4(b-c).

Recall that in the presence of an electric field, the M ′ = ±1 excited state parity doublets

mix and Stark shift in opposite directions. For now, we’re free to leave the addressed excited

state manifold, with either a positive or negative Stark shift, unspecified. We let η0 denote

whichever of η±(J = 1, J ′ = 0, β) is appropriate for the chosen excited state that is

spectroscopically addressed by the J ′ = 1 ↔ J = 1 laser. The normalized branching ratios

for decay from J = 1 are then given in Table 2.4.

From this point, we can use the same geometric series trick as in Sec. 2.6.3 to determine

the final populations. The result is

P 2
J ′=0 = P 1

J ′=0 + (2/3)η0ℓ
1−(1−η0)ℓ P 1

J ′=1

P 2
J ′=2 = (1/3)η0ℓ

1−(1−η0)ℓ P 1
J ′=1

(2.36)

21. For convenience, here only we will take the quantization axis to be along the applied electric field in
the rotational cooling region (approximately vertical) even though it does not coincide with the laboratory
axis convention used elsewhere.
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Figure 2.5: Alternative rotational cooling scheme, in a single field-free region, using mi-
crowaves.

We consider two figures of merit for the rotational cooling scheme. The efficiency E of

the process is just the relative population in J = 0 at the end of step 2, and represents

how much more efficiently we could hypothetically perform rotational cooling. The gain G,

which is of more direct experimental interest, is the ratio of this population to the initial

population in J = 0:

E = P 2
J ′=0, (2.37)

G = P 2
J ′=0/P

0
J ′=0. (2.38)

To compute η with a given electric field, we find β(E) = − 2DE|Ω|
∆ΩJ(J+1) . In the C state,

∆Ω = 2π × 51 MHz [154] and D = 1.00 ea0 [148, Sec. 6.5]. Thus in J = 1, DC,1 =

0.63 MHz/(V/cm) and EC = 51 MHz/(0.63 MHz/(V/cm)) = 81 V/cm, where EC is defined

such that β(EC) = 1. In order to “fully mix” the parity in the C state, we need to apply an

electric field on the order of 2EC ∼150 V/cm.

Rejected alternative: optical pumping with microwaves

As an alternative optical pumping scheme to populate J ′ = 0, we considered mixing the

populations in J ′ = 1, 2 by using microwaves. If the J ′ = 2 → J = 1 laser depopulates

70



J ′ = 2 in the ground state, then J ′ = 1 must be depopulated as well. See Fig. 2.5.

In computing the efficiency of this process, we may consider the J ′ = 3 → J = 2 ;

J ′ = 1 process to occur before the microwave remixing. Then the population in J ′ = 1

before remixing is simply P 1
J ′=1 as computed before. The optical pumping J ′ = 2 → J =

1 ; J ′ = 0 proceeds as usual with the substitution P 0
J ′=2 → P 0

J ′=2 + P 1
J ′=1. Making these

substitutions,

E = P 0
J ′=0 +

(2/3)ℓ

1 − (1/3)ℓ
(P 0

J ′=2 + P 1
J ′=1) (2.39)

G = E/P 0
J ′=0 (2.40)

This is more efficient than the first scheme considered because the branching ratio for

J = 1 ; J = 0 is more favorable in the absence of an electric field and because any

molecules that land in J ′ = 2 during “Step 2” of the previous scheme are simply lost, while

in the alternative scheme using microwaves they can be excited by the laser again. A minor

inconvenience is that this alternative requires twice as much power on the J ′ = 2 → J = 1

laser because each molecule is in the addressed ground state for only half the time (in the

case that the microwaves saturate the J ′ = 2 ↔ J ′ = 1 transition).

More importantly, there is an off-resonant excitation of the H(J = 1) ↔ H(J = 2) tran-

sition since the rotational constants in each electronic level are simliar: BH = 0.326 cm−1,

compared to BX = 0.333 cm−1 [160]. This transition is thus off-resonant by ∆ ∼ 2π×1 GHz

in the H state if X is driven on resonance. This will not drive any significant population

transfer, but it could lead to AC Stark shifts in the H(J = 1) state, and thus systematic

errors.

In more detail: in a two-level system driven with detuning ∆ and resonant Rabi fre-

quency Ω, the energy shift in the ground state is δω = 1
2(∆−

√
∆2 + Ω2), as can be found by

diagonalizing the Hamiltonian in the rotating frame with the rotating wave approximation

(see [149, Sec. 4.3] for a careful treatment of AC Stark shifts in the ACME experiment). If,

e.g., Ω = 2π × 10 MHz, then the AC Stark shift is of order δω ∼ 2π × 50 kHz. To leading

order, the AC Stark shift is quadratic in the Rabi frequency. In certain configurations, AC
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Quantity Meaning Likely range Best guess Observed

T Initial rotational temperature 3-4.5 [K] 3.75 K -
ℓ Branching ratio for

C(v = 0) ; X(v = 0)
0.6-0.8 0.74 -

η0 Multiplicative factor for
Hönl-London factor from
parity selection rules. We set
this with the electric field E .

0-1 0.5 -

E Efficiency (proportion of all
molecules ending up in
J ′ = 0)

34-56% 47% -

G Gain (ratio of number of
J ′ = 0 molecules after cooling
to number before cooling)

2.7-4.6 3.8 2.7

Table 2.5: Definition of quantities and the figures of merit expected based on the model
considered here. The gain expected from the microwave scheme is ≈ 20% higher than in
the ACME II scheme, while using the I excited state is anticipated to improve J ′ = 0 yield
by ≈ 40%.

Stark shifts on the order of a few kHz could be problematic, so the effect of these shifts must

be better understood if we use this rotational cooling scheme in the future. We expect that

using the rotational cooling scheme with microwaves would improve the J = 0 population

yield by approximately 20%, which at present is not enough of an improvement to overcome

concerns about systematic errors.

2.6.4 Anticipated and measured rotational cooling gain

Based on the models in previous subsections, I compute the efficiency of the laser-based and

microwave-based schemes separately. I also compare these to the case in which we use the

I excited state, where ℓ = 0.91 compared to the C state where ℓ ≈ 0.75. Because T and ℓ

are not known precisely, I indicate a range for E and G based on the reasonable parameter

intervals T ∈ (3, 4.5 K), ℓ ∈ (0.6, 0.8), and η0 ∈ (0.1, 0.9). A summary of various quantities

is given in Table 2.5 for reference. For detailed plots of all parameter space, and with gains

from each optical pumping laser given separately, see [175] (internal ACME document).
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Comparison to measurements

In the following discussion, I refer to the J ′ = 3 → J = 2 laser, the J ′ = 2 → J = 1 laser,

and the J ′ = 1 → J = 1 laser as J3, J2, and J1, respectively. We have measured individual

increases to the J = 0 population to be, conservatively, ∼ 70% from J1, ∼ 80% from J2,

and ∼ 20% from J3 (with the J1 laser also on), for an overall gain of ∼ 2.7. I have quoted

gains for each laser relative to the no-cooling case. If we instead take the configuration with

the J1 and J2 lasers as our baseline, then the J3 laser contributes only an additional ∼ 8%

to the signal. For this reason, we typically leave the J3 laser off during data collection, in

order to make the system more robust overall (as there is one fewer laser to keep locked).

These results are consistent with the most pessimistic scenario in which ℓ ≈ 0.6 and

T ≈ 3 K. Given that there are some imperfections not included in the model (e.g., less than

perfect saturation or alignment), it is not too surprising that the overall gain is toward the

lower range of our predictions.

There is little effect of the applied electric field on the efficiency of the J1 pumping,

over the range 50 − 200 V/cm. It is more efficient to address the positively Stark-shifted

excited state than the negatively Stark-shifted excited state due to a more advantageous

parity admixture.

We also observe less than 10% difference in J2 gain between configurations where the

laser passes are quite close together and widely spaced. The closely-spaced configuration is

slightly better, consistent with the fact that the tight spacing allows more laser passes and

therefore higher total power seen by the molecules. This shows that adiabatic following of

dark states with closely-spaced laser passes is not a major problem in our operating regime.

The polarization switching is implemented by double-passing the laser light through a

quarter-wave plate, which rotates the linear polarization by 90◦ between each subsequent

pass of the laser through the vacuum chamber. However, if the fast axis of this wave

plate is aligned with the initial linear polarization, then no polarization switching should

occur. Therefore, we can check the effect of polarization switching on the rotational cooling

gain by rotating the wave plate axis relative to the initial laser polarization. Contrary to

our model, we do not see any effect of adjusting the quarter-wave plate angle on the J1
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transition; in other words, direct polarization switching has no effect on the optical pumping

efficiency. We believe that fringing electric fields between the field plates (whose design was

not optimized at all for homogeneous fields) create a rotating quantization axis, which has

a similar effect as an alternating polarization between each laser pass. The effect of the

quarter-wave plate angle was as expected for the J2 transition, where any residual electric

fields are negligible.

All three lasers appear reasonably well saturated with ∼ 10 mW, consistent with expec-

tations.

2.6.5 Future considerations

The general approach to rotational cooling is likely to be unchanged in any future ACME

measurements. For a time, we planned to use an electrostatic lens, which “focuses” the

molecules as they traverse the beam line via a radially confining harmonic Stark potential.

In the original plan, this would require population in the X(J = 2, M = 2) state. We have

demonstrated efficient X → C → X STIRAP previously in the ACME experiment (first

by Emil Kirilov and subsequently by Cris Panda). It was therefore determined that the

optimal state preparation for an electrostatic lens in the X(J = 2, M = 2) state would

involve rotational cooling to J = 0, just as we do in the ACME II measurement, followed

by STIRAP to the focusing state, rather than direct optical pumping into J = 2.

We now expect that, if an electrostatic or magnetostatic lens is used, any future lensing

state will be in the Q3∆2(J = 2, M = 2) state, which is even less favorable for optical

pumping state preparation than X(J = 2, M = 2). Therefore, optical pumping into J = 0

(using the same methods as in ACME II) followed by STIRAP into the focusing state is

likely to be the only viable state preparation procedure.

As already mentioned, the I state has a more favorable branching ratio for optical

pumping (≈91% vs. ≈75% branching to X(v = 0)), but a less convenient wavelength for

home-made lasers (512 nm vs. 690 nm). Daniel Ang has set up a 512 nm laser from Top-

tica, demonstrating that rotational cooling via the I state should be feasible. Preliminary

measurements by Daniel and Cristian Panda validate the expectation that optical pumping

through I leads to slightly more efficient preparation of X(J = 0). However, Daniel and
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Cole Meisenhelder have already set up more stable and robust 690 nm lasers (Toptica DL

Pro vs. the homemade lasers used in ACME II) for future rotational cooling, making the

purchase of several more Toptica DL Pro lasers for the X → I transition less appealing,

considering the relatively modest (≈ 30 − 40%) improvement in expected signal.

Finally, for more technical details of the rotational cooling power requirements and

alignment, see Appendix B.

75



Chapter 3

Data analysis

It is said the number is the number of birds

that can nest in an ancient tibrol tree,

less three grams of honest work,

but Vivec in his later years found a better one

and so gave this secret to his people.

The Thirty-Six Lessons of Vivec

3.1 Schematic view of the analysis routine

We are ultimately interested in measuring precession frequencies, and in particular the

contribution to precession frequencies arising from the EDM interaction, but these are

encoded somewhat indirectly in the raw data. I will go over our general analysis approach

quickly in this section, relying on the conventions used in [129]. Note that certain choices

in the analysis might vary in other versions.1 In Sec. 3.2, I will revisit the data analysis

procedure with an emphasis on the statistical assumptions involved.

1. In ACME II, we had two “independent” analyses–mine and Cristian Panda’s–and two “satellite analysis
checks”–Jonathan Haefner’s and Daniel Ang’s. The latter two were developed with substantial cross-checking
with the former two, which introduces, in principle, the possibility of correlated errors. Cris’s and my codes
were written with as little communication about analysis choices as possible, to ensure that the likelihood
of replicating any mistake is minimized.
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Average degenerate traces

In the first step of the analysis, I typically gather “degenerate” traces, which are all of

the signals acquired with the same experimental switch settings within a block, and average

them together, reducing the effective number of traces per block from 64 to 16, each of which

involves data taken with a different configuration of block-level switches (Ñ , Ẽ , θ̃, B̃).

We found that a small proportion of single traces (less than one in 104) was triggered

incorrectly such that nominal precession phases for one trace in a block can represent large

outliers from the other three, nominally degenerate, traces in the same experimental state

within a block. My analysis routine checks for such an event and, when a single trace

appears to be a significant outlier, removes such traces and averages the remaining traces

together.

Bin-level fluorescence and background subtraction

Scattered light and electronic offsets contribute to the PMT signal, so we perform a back-

ground subtraction measurement before computing any quantities nominally related to the

ThO molecules. In particular, we compute an integrated fluorescence FX,Y for each of the

∼ 4000 polarization bins in a trace. Each FX,Y is integrated only over the designated sub-

bin, which is defined as an analysis parameter (for an example, see Fig. 4.15). We define

the background of X and Y bins separately, so that BX,Y ≡ 〈FX,Y 〉bg, where the brackets

indicate an average over a designated background region that can be varied as an analysis

parameter (the first 1-2 ms of the trace). The “signal” part of the fluorescence is then

defined to be SX,Y ≡ FX,Y −BX,Y .

Individual asymmetries

In order to determine precession frequencies, we first compute precession phases φ = ωτ .

These are given by the difference in integrated signal between X and Y bins. In particular,

the asymmetry is, as defined previously,

A ≡ SX − SY
SX + SY

∝ cos[2(ωτ − δθ +
π

4
(P̃ + 1))], (3.1)
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where as before, δθ designates the angle between the linear polarization of the X beam

and the preparation laser polarization, and P̃ is the parity of the excited state addressed

by the readout lasers. Recall that δθ = δθ0 + ∆θθ̃ depends implicitly on the θ̃ state. The

asymmetry is now defined for all ∼ 2000 polarization bin pairs in each trace (which, recall,

contains data from only a single configuration of the experiment).

Grouped asymmetries

We now “group” asymmetries in each of the 16 states together. If the group size is 20, for

example, then we partition the ∼ 2000 asymmetry values into ∼ 100 sets of 20. In each set,

we compute a linear regression, giving an estimate of the mean asymmetry value within the

group and the uncertainty in the mean. We now have ∼ 100 asymmetry values for each

of 16 states within a block. In everything that follows, I only combine data with the same

group index (but possibly from different states) unless stated otherwise. As a result, we can

examine the data as a function of time after the beginning of a trace (≈time after ablation,

up to a constant offset, since the same time after ablation will always correspond to the

same group index within a block).

In ACME I, it was only necessary to compute the sample mean and corresponding

uncertainty in the mean for data within a group. With our improved signal-to-noise ratio in

ACME II, we can resolve the linear slope, arising from velocity dispersion in the molecular

beam, among asymmetry values within a group. Therefore, we must measure the mean

asymmetry in the group using linear regression to appropriately estimate the uncertainty

in the mean. Fitting the data to a line, rather than the mean, inflates the uncertainty in

the mean by a negligible factor of
√

(Ngrp − 1)/(Ngrp − 2),where Ngrp ∼ 20 is the number

of asymmetry values in the fit for each group. It is not practical to instead use smaller

group sizes (e.g., Ngrp ∼ 2), within which the local slope of asymmetry values cannot be

resolved, because the uncertainty in the mean of all groups would be inflated by the factor

of approximately
√

Ngrp/(Ngrp − 1). Here, the numerator arises because there are more

groups in a given molecular pulse when smaller group sizes are used, while the second

factor is proportional to the uncertainty in the mean for a single group.
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Asymmetry and contrast

We combine asymmetries in θ̃ = ±1 states to produce a θ̃-averaged asymmetry and contrast:

A(Ñ ẼB̃) = s
2 [A(Ñ ẼB̃, θ̃ = +1) + A(Ñ ẼB̃, θ̃ = −1)]

C(Ñ ẼB̃) = t
2 [A(Ñ ẼB̃, θ̃ = +1) − A(Ñ ẼB̃, θ̃ = −1)]

(3.2)

where s = sign(C) = B̃P̃R̃ at large values of B and s = P̃R̃ otherwise; further, t =

−180◦/(2π∆θ), with ∆θ ∼ 6◦ giving the full readout beam half-waveplate dither range in

degrees (recall Sec. 2.5).2

Older references refer to A defined in this way as the “B-corrected asymmetry” for

historical reasons. I refer to it instead by the more general name, “C-corrected asymmetry.”

The factor of sign(C) in the definition of A(Ñ ẼB̃) prevents us from accidentally revealing the

EDM blind by examining the asymmetry in different superblock states, where sign(C) can

reverse. In particular, building in an explicit factor of sign(C) guarantees that asymmetry

offsets introduced for blinding during analysis are indistinguishable from real precession

phases, whose signature in the uncorrected asymmetry (i.e., computed without the factor

of sign(C)) would otherwise reverse when the sign of C reverses. This will become clearer

when we discuss the blinding procedure.

I never compute the “uncorrected” asymmetry for any reason, and therefore generally

drop the explicit “C-corrected” label outside this section.

Phase

The phase (in each Ñ ẼB̃ state and group) is

φ =
A

2|C| . (3.3)

This is dominated by Zeeman precession in each state, and therefore reverses sign with

B̃ to leading order. Velocity dispersion in the molecule beam causes a non-trivial time-

2. Reminder: The full waveplate dither range is half the full polarization dither range, which is in turn
the polarization step size ∆θ.
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dependent structure of φ(t) within the molecule pulse: slower molecules precess longer and

have larger phase accumulation.

Note that most references in the group use the definition φ = A
2C , which is appropriate

for the C-uncorrected asymmetry. Since, as stated previously, I only use the C-corrected

asymmetry, the absolute magnitude of contrast in the denominator effectively cancels out

the “C-correcting” factor of sign(C) implicit in the definition of A.

Parity sums

We will want to relate measured phases to energy shifts, 〈H〉 = αM , corresponding to

φ = ατ where α is some prefactor that may depend on experimental switch states, τ is

the precession time, and M is the projection of total angular momentum on the laboratory

z-axis. Since the precession time is extracted from the B̃-odd Zeeman precession phase,

we have to change from the state basis {φ(Ñ = ±, Ẽ = ±, B̃ = ±)} to the parity basis

{φ(Ñ )(Ẽ)(B̃)}, where in the parity basis each switch factor in parentheses might or might not

appear explicitly. (The exact notation will be explained shortly.) The function of the parity

basis is most clearly understood from the definition,

φ(Ñ , Ẽ , B̃) = φnr + φÑ Ñ + φẼ Ẽ + φB̃B̃ + φÑ ẼÑ Ẽ + φÑ B̃Ñ B̃ + φẼB̃ẼB̃ + φÑ ẼB̃Ñ ẼB̃. (3.4)

Therefore, each term x··· (referred to as a “parity sum”) is the part of quantity x that

reverses sign when any of the superscripted switches is changed. Each parity component is

isolated by inverting this equation (more precisely, this set of 8 equations). The parity basis

notation is unfortunately overloaded: a superscript S̃ indicates that a quantity reverses sign

when the factor S̃, representing a state of a switch, changes. Further, we should remember

that a particular component such as φÑ must not reverse sign under switches not explicitly

listed, so we have to know which unlisted switches are implicitly included in the definition of

a particular parity component. Despite these caveats, the parity basis notation is extremely

useful when used carefully.

In many cases, it is easiest to think of the measurement values φ(Ñ = ±, Ẽ = ±, B̃ = ±)
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as components of a vector, ~φ = φ(+++)ê+++ + · · ·+φ(−−−)ê−−−, where ê+++, · · · , ê−−−

form an orthonormal basis. We are free to rewrite this vector in any convenient basis via

an invertible change-of-basis matrix P . If we want to preserve orthonormality in the new

basis, we additionally require that P−1 = P T . Once we construct the matrix P , we can

almost effortlessly change any quantity (phase, asymmetry, contrast, etc.) back and forth

between bases.

After constructing the change-of-basis matrix P = Pstate→parity, I compute ~φparity =

P ~φstate. This allows us to infer the energy shifts contributing to measured phases,

{〈H〉(Ñ )(Ẽ)(B̃)} = {φ(Ñ )(Ẽ)(B̃)M/τ}. (3.5)

An alternative perspective on the “parity sum,” as a special case of ordinary least squares

regression, is given in Appendix C.

Precession time

The applied magnetic field causes Zeeman precession due to the Hamiltonian term ωB̃ =

−gµB |B|, leading to a B̃-odd phase φB̃ = −gµB |B|τ . The g-factor in the J = 1 manifold

of the H state is g = −0.00440(5) [129]. We have calibrated our magnetic field coils (see

Sec. 5.2.4) and found that the precession region experiences 1.337(3) mG per mA of applied

current. The total precession time is then

τ =
φB̃

−gµB |B| =
φB̃

+|g|µB dB
dI I

, (3.6)

where dB
dI = 1.337 mG/mA is a calibration factor, I is the applied current, and |g| = 0.00440.

This formula gives the total Zeeman precession time, but recall that we only measure

phases up to multiples of π/4 in order to maximize the sensitivity to small changes in phase.

In particular, we set the preparation and readout bases to have a relative angle of δθ ≈ nπ4

where n is an integer, such that |φmeasured| < π
4 in all states. Then

τ =
φB̃

measured + nπ4
|g|µB dB

dI I
. (3.7)
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In the data analysis, we estimate n from the expected Zeeman precession,

φB̃ = |g|µB dB
dI Iτ

≈ nπ4

→ n =

[

|g|µB
dB
dI
Iτ0

π/4

]

,

(3.8)

where the brackets denote that we round n to the nearest integer and τ0 = 1 ms is an

estimate of the precession time that is always accurate to much better than the 50% required

for this procedure to correctly assign the value of n.

Precession frequencies

We compute precession frequencies in the state basis by

ω(Ñ , Ẽ , B̃) =
φ(Ñ , Ẽ , B̃)

τ
. (3.9)

Since ~ωparity = Pstate→parity(~φstate/τ) = φparity/τ , I compute parity components of fre-

quency directly from the parity components of phase. In principle, we should exercise care in

computing the uncertainty of frequency parity components, since φ(Ñ , Ẽ , B̃) and τ are non-

trivially correlated, but it turns out handling this carefully doesn’t give results significantly

different from the naive method of propagating uncertainty (i.e., ignoring covariances).

Blind the EDM

It is plausible that, if we expected the EDM to have a certain value (e.g., zero), then we

would subconsciously “massage” the system until we managed to measure that particular

value because, alas, we are humans. In order to avoid this potential source of bias, we add

a “blind” to the EDM and related channels, AÑ Ẽ , φÑ Ẽ , and ωÑ Ẽ . Since the EDM “lives”

in the frequency ω, we apply the blind there first and propagate backward. It is easiest to

work this out thoroughly using vector notation. Suppose we have a parity-basis frequency

vector ~ωp and want to apply a parity-basis blind ~Ωp. The frequency blind in the state basis

is then properly ~Ωs = P−1~Ωp = P T ~Ωp, where P is the orthogonal transformation matrix

from the state basis to the parity basis. In our case, the only non-zero component of ~Ωp is
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ΩÑ Ẽ
p .

~ωp → ~ωp + ~Ωp

~φp → ~φp + ~Ωpτ

~φs → ~φs + P T ~Ωpτ.

(3.10)

To propagate to the asymmetry, we’ll switch to index notation:

Ai
s → Ai

s + 2|C|is
∑

j(P
T )ijΩj

pτ

= Ai
s + 2|C|is

∑

j P
jiΩj

pτ

= Ai
s + 2|C|isP Ñ Ẽ,iΩÑ Ẽ

p τ

Ai
p → Ai

p + 2ΩÑ Ẽ
p τ

∑

j P
ij |C|jsP Ñ Ẽ, j .

(3.11)

Let’s pause and consider the ideal case when |C|js = |C|s for all j. Then orthogonality of

P implies that Ai6=Ñ Ẽ
p → Ai6=Ñ Ẽ

p is unchanged by the blind, and the blinded EDM-correlated

asymmetry is AÑ Ẽ
p → AÑ Ẽ

p + 2ΩÑ Ẽ
p τ |C| as we might expect.

However, in the more general case that state-by-state contrasts are not identical (which

is indeed the case for any particular dataset), |C|js 6= |C|s for all j, self-consistency would

require some contribution from the blind to all parity channels of the asymmetry, Ai6=Ñ Ẽ
p .

We normally blind by modifying only the EDM parity channel. This means that computing

phases or frequencies from blinded asymmetry data could result in an inconsistency–and

even worse, it could reveal the blind. As long as we are careful about this possibility,

however, we are free to blind only the EDM-correlated asymmetry channel for the sake of

simplicity. In short: we can compute unblinded phases and frequencies from unblinded

asymmetries, but once the blind is added to the EDM-channel asymmetry, we can never

again use asymmetries to compute phases or frequencies.

Because each parity component of a quantity has equal-magnitude contributions from

every state component (e.g., the non-reversing component is an equal-weight sum of all

state components), with distinct parity components distinguished only by the relative signs

of each state contribution, it follows that P ij = ±1
8 . We can simplify the expression for the

EDM-channel asymmetry by exploiting the identity (P ij)2 = (±1
8)2, in which case
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AÑ Ẽ
p → AÑ Ẽ

p + 2ΩÑ Ẽ
p τ〈|C|s〉, (3.12)

where 〈|C|s〉 is the average magnitude of the contrast across all states.

The blind is simply stored as a number in a binary file, and interpreted as a precession

frequency drawn from a normal distribution with 1σ = 13 mrad/sec (approximately the

90% confidence bound on ωÑ Ẽ from ACME I). We have taken some caution to write our

analysis code such that it is difficult to unblind by accident. We only checked the blind

after the entire collaboration had agreed that the data analysis and systematic error control

were finalized. After unblinding, we did not change the results of our analysis.3

Difference between g-factors: η

For each block, after computing precession frequencies, we compute the molecular quantity

η ≡ − ωÑ B̃

µB |EB| ≈ −0.8 nm/V, which describes the electric-field-dependence of the H state

g-factor (see Sec. 4.8). This should be normally distributed with uncertainty set by the

precession frequency. This quantity is used as a sanity check and diagnostic, but isn’t

necessary to compute the EDM.

Superblock switches

We compute superblock parity components for A, C, ω, τ, η, and auxiliary parameters used

to look for systematics (beam box temperature, vacuum pressure, etc.). Data taken in

different superblock states are uncorrelated, so simple error propagation is sufficient. For

a given superblock state within a superblock, we can compute the weighted average of

every quantity for each group separately, or average together quantities (e.g., ωÑ Ẽ ) in a

group-independent way.

The non-reversing superblock parity component is equivalent to an unweighted average

over all superblock states. If different amounts of data are taken in each superblock state,

then the uncertainty in each parity component has the largest contribution from the state

3. It would be possible to construct the blind such that it is actually impossible for us to unblind before
this. However, we are trying to guard against subconscious bias, not outright malice.
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with the least data. However, a weighted average could bias the result in the presence of a

systematic error, so we use only unweighted error propagation when combining data taken

in different states and accept the slight loss in sensitivity.

Uberblock switches

Anything slower than a superblock switch is an “uberblock” switch, and is not regarded as

necessary for an EDM measurement. In particular, we will regard the run-level quantities

(i.e., the average value of ωÑ Ẽ for a given run) as being given by weighted averages over all

superblocks (irrespective of the uberblock states, since uberblock switches are not necessary

to obtain valid EDM values). However, we use the uberblock switches to confirm control of

systematic effects.

To do this, we compute regressions (typically linear but sometimes quadratic) against

all uberblock switches (e.g., the power of the refinement laser, Pprep). For example, we may

compute dωÑ Ẽ

dPprep
. We often run with different magnitudes of the applied magnetic field, B,

and I typically compute regressions (e.g., dωÑ Ẽ

dPprep
) for each value of B separately, as well as

for all B combined.

In some cases, we will intentionally check for a systematic with multiple uberblock

switches (e.g., detuning of the STIRAP lasers ∆STIRAP and magnetic field gradient ∂B/∂z),

in which case we compute regressions involving both parameters (e.g., ωÑ Ẽ = ωÑ Ẽ
0 +ωÑ Ẽ

1 s1+

ωÑ Ẽ
2 s2 +ωÑ Ẽ

12 s1s2 for parameters s1 and s2). We carefully examine all resulting regressions

and confirm that we can understand their behavior.

3.2 Statistical distributions in an ideal measurement

By default, we rely on Gaussian statistics, but our underlying data is not exactly Gaussian

to begin with. Worse still, we perform operations on the data that can introduce correlations

and map even normal variables to non-normal variables. Although we check the statistical

behavior of our results as we go via calculations of reduced chi-squared statistics, comparison

to simulations, and by varying analysis parameters, it can be useful to have at least a broad

picture of the statistical assumptions that we are otherwise sweeping under the rug.
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Here, I will proceed with a detailed statistical analysis for the case of an ideal measure-

ment, where there is no technical noise source such as electronics or experiment timing.

We will see in Sec. 4.15 that in fact, we have significant noise beyond the level expected

for an ideal measurement. The treatment of the ideal case here has been useful in ruling

out statistical artifacts as the source of our excess experimental noise. In future iterations

of the ACME experiment it will be necessary to suppress the additional technical noise

(since otherwise an improved measurement cannot be made), and the statistics of an ideal

experiment will hopefully be recovered.

3.2.1 PMT signal: compound Poisson process

Implicitly, we assume certain statistical properties of the electronic signal generated by the

photomultiplier tubes used to detect fluorescence signals in the ACME experiment. These

assumptions inform the manner in which we analyze data (e.g., we assume that the photon

shot-noise limit on the phase sensitivity can be reached), even though we do not directly

“pre-process” the PMT signals. Therefore, it is instructive to consider how exactly these

electronic signals arise, and what limits their statistical noise. In subsequent sections, we

will analyze the statistical properties of “processed” data, keeping the underlying statistics

of the PMT signals in mind.

In the simplest case, we model our data as being generated from two Poisson processes,

corresponding to signal photoelectrons and background photoelectrons with characteristic

numbers NS(B) for each sample within a trace. Note that we are already making a huge

simplifying assumption, namely that the gain of photoelectrons is uniform.

The gain of the PMT’s used to detect photons would be better (though still approxi-

mately) described by a Poisson distribution [176]. The measured fluorescence in a particular

sample is F =
∑n
i=1 fi, where fi is the photoelectron gain of the ith detected photon, and is

drawn from some gain distribution, while n ∼ Poisson(Npe) and Npe is the expected number

of photoelectrons incident on the PMT’s. The notation x ∼ D(p1, · · · , pn) denotes that a

random variable x is drawn from the distribution D parametrized by p1, · · · , pn. Here, D

represents a distribution’s name rather than a proper function of the parameters.

If we model the gain of each dynode stage with a Poisson distribution, then the varia-
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tion in the gain of the first stage dominates the overall variance of the PMT gain (since the

total gain of the subsequent stages is averaged over the electrons generated at the output

of the first dynode). Therefore, we can write F =
∑n
i=1 αGi, where Gi ∼ Poisson(N1), N1

is the expected gain of the first stage of the PMT’s, and α = NPMT/N1 is the expected

product of gains from the remaining PMT stages. (Note that I’m still making the simpli-

fying assumption that all 8 PMT’s have the same gain distribution.) That is, the number

of photoelectrons is the sum of Poisson-distributed variables, where the number of terms

in the sum is drawn from another Poisson distribution. This is a particular case of the

“compound Poisson distribution,” which has no simple form in general. In the limit that

the expected number of photoelectrons is large, Npe → ∞, the central limit theorem gives

F ∼ Normal(Npem1, Npem2) where mi = E[f i] is the expectation value (i.e., mean) of f i

and Normal(µ, σ2) denotes a normal distribution with mean µ and variance σ2 (e.g., see the

lecture notes [177]). In the specific case fi/α ∼ Poisson(N1), the number of detected signal

photons is given by

F ∼ Normal(αN1Npe, α
2(N2

1 +N1)Npe). (3.13)

Thus when we have a large number of photoelectrons, the fluorescence signal is well-

approximated by a normal distribution.

When, in addition, the gain of the first PMT stage is reasonably large such that

N2
1 ≫ N1, the fluorescence signal is drawn from a distribution approximated by a nor-

mal distribution with mean µ = 〈G〉Npe and standard deviation σ = 〈G〉√Npe, exactly as

we would naively hope. Here, 〈G〉 is the expected gain from the PMT’s. The exact standard

deviation in this model is σ = 〈G〉√Npe(1 + 1/
√
N1). This result is a specific consequence

of the more general fact that the spectral noise density, S, of a compound Poisson process

is given by S = 2qeI × Fe.n., where Fe.n. = 1 + var(G)/〈G〉2 is the “excess noise factor,” I

is the photoelectron current, and qe is the magnitude of the electron charge.

In ACME II, Cristian Panda measured the gain distribution of the PMT’s by integrating

the current response of single-photon detection events, for many photons. By taking the

ratio of the mean and variance of these distributions, we find that the PMT’s have excess

noise factors in the range 1.2 − 1.3. I typically take a representative value of Fe.n. = 1.25.
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Since we empirically determine the variance of asymmetry values, this excess noise factor is

automatically accounted for in the nominal error bars of all quantities of interest that are

extracted from the data. However, it may be useful to realize that we typically neglect it

(and in particular, I neglect it in the folllowing sections) when considering the statistical

properties of the EDM data. Since the excess noise factor is “reasonably close” to 1, we

expect this approximation not to invalidate the main conclusions.

3.2.2 Background subtraction

We model the background and signal as being produced by separate Poisson processes with

characteristic photoelectron numbers NBG and NS . The background measurement, made

over several hundred bins, allows us to determine the characteristic background rate to a

precision far greater than the fluctuations of the background in any particular bin, so we

assume that NBG is known exactly. There are ∼ 25 background photons per bin after

summing over 25 shots/trace and 4 degenerate traces/state.

We measure only total counts c = s + b, where s is the true signal count and b is

the true background count. We subtract a measured average background level NBG to

obtain an inferred signal s̃ = c − NBG 6= c − b, where the inequality reminds us that we

do not actually know the exact number of background counts in a particular bin. However,

E[c−NBG] = E[c−b], so our procedure gives an unbiased estimator of the true signal counts.

Here, E[x] denotes the expectated value of a random variable x over many iterations of an

experiment.

The total counts are composed of the sum of two Poisson-distributed variables, and are

thus also Poisson distributed, c ∼ Poisson(NS+NBG). Even the background counts are large

enough (∼ 25 per bin) to justify replacing the Poisson distribution with a normal distribu-

tion, Poisson(N) → Normal(N, N)4, so we approximate c ∼ Normal(NS+NBG, NS+NBG).

Therefore s̃ = s−NBG ∼ Normal(NS , NS +NBG).

In conclusion, background-subtraction is valid when the background and signal count

rates within a bin are both significantly larger than one, at the unavoidable expense of a

4. As a reminder, the first argument of the normal distribution is its mean, while the second argument is
its variance.
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slight increase in the variance of the inferred signal relative to the true (background-free)

signal variance, which can never be independently measured. That said, a word of caution

is necessary: while our background-subtraction works in expectation, it can give unphysical,

negative inferred signal counts when NS ≈ NBG or smaller. Avoiding this is one (though

not the only) advantage of using a fluorescence threshold cut during data analysis, in which

any bin with fewer than ∼ 500 detected photons is discarded from the data set.

More complicated background-subtraction procedures exist, which give Bayesian esti-

mations of signal counts, given a known typical background rate and observed total count

[178–180]. These methods appear to have been developed mostly for astrophysical observa-

tions, where the signal-to-noise ratio can be very low in observing faint sources. However,

the efficacy of these methods depends sensitively on the signal and background models, and

they tend to be much more computationally intensive. For these reasons, I chose to use the

simplest version of background subtraction as above.

3.2.3 Asymmetry

In everything that follows, we consider only background-subtracted signals in the X and Y

bins, which we denote SX and SY , respectively. From these, we compute the asymmetry

A =
SX − SY
SX + SY

. (3.14)

In the regions of interest, SX,Y can be modelled as Gaussian-distributed variables (with

µX,Y ≈ σ2
X,Y ≈ NX,Y ). The sum or difference of normally distributed variables is itself

normally distributed, S± ≡ SX ± SY ∼ Normal(µX ± µY , σ
2
X + σ2

Y ). Further, note that

cov(S+, S−) = σ2
X−σ2

Y 6= 0 because the numerator and denominator, SX−SY and SX+SY ,

are both constructed from the same independent variables. This might seem surprising at

first, but in general, linear combinations of independent variables are not independent.

The correlation coefficient is then ρ ≡ corr(S+, S−) ≡ cov(S+, S−)/(σ+σ−) = (σX/σY ) −

(σY /σX). We can approximate this simply as follows: for signals SX,Y = S0(1 ± A/2), we

expect σX,Y ≈ σ0

√

1 ± A/2 so that ρ ≈ A + O(A3) ≤ 0.2 typically.

In general, the distribution of the ratio between two correlated normally-distributed
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variables is extremely complicated. However, it’s clear that in the limit that the denominator

approaches a constant, the ratio should approach an ordinary normal distribution. This

idea is made more rigorous in terms of the “coefficient of variation,” σ/µ, and explored via

Monte Carlo simulations in [181]. They conclude that for ρ < 0.5, |σ/µ|num. > 0.19, and

|σ/µ|den. < 0.09 (where the “num.” and “den.” subscripts specify the coefficient of variation

of either the normally distributed numerator or denominator only), the ratio distribution

is reasonably well-described by a normal distribution with mean5

µA ≈ µX − µY
µX + µY

+ (σ2
X + σ2

Y )
µX − µY

(µX + µY )3
− σ2

X − σ2
Y

(µX + µY )2
. (3.15)

The first term is the ideal asymmetry. Using σ2
X,Y → µX,Y , the correction terms cancel

exactly. Thus the higher-order terms are deeply suppressed.

The variance of the ratio distribution in this regime leads to

σ2
A ≈ (σ2

X + σ2
Y )(µX − µY )2

(µX + µY )4
+

σ2
X + σ2

Y

(µX + µY )2
− 2(σ2

X − σ2
Y )(µX − µY )

(µX + µY )3
. (3.16)

Using the same approximation σ2
X,Y → µX,Y → NX,Y and writing µX −µY

µX +µY
→ A, we can

express this as

σ2
A ≈ A2 + 1 − 2A2

NX +NY
=

1 − A2

NX +NY
. (3.17)

The A2 term is typically much smaller than the previous leading term since A ≪ 1 in

the usual regime. If we neglect this correction term, then we recover the shot-noise limit,

σA ≈ 1/
√
Ntot, where Ntot is the total number of molecules measured. Thus we can use

Ameasured ∼ Normal(A, 1/(NX +NY )) as usually assumed.

Before moving on, we must check the conditions |σ/µnum.| > 0.19, and |σ/µ|den. < 0.09.

Note that |σ/µ|num. is minimal for maximal values of |A| < 0.2. Letting σnum. →
√
N , we

find that the first condition is satisfied for
√
N > 0.04, which is trivially true. Likewise,

|σ/µ|den. ≈ 1/
√
N < 0.09 implies N > 125. My signal threshold is typically set so that

5. Following the conventional notation, I generally denote the mean of a normal distribution by µ.
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N > 500 photons per bin pair are measured, providing a comfortable margin.6

I’ll note, somewhat out of turn, that the asymmetry computed from combined datasets

(e.g., summed degenerate traces) is equivalent to the weighted average of asymmetries

from individual datasets, where the weights are given by the shot noise limit: Atot ≡
∑

SX,i−
∑

SY,i
∑

SX,i+
∑

SY,i
=
∑

[AiNi]/Ntot ≡ Ā. This justifies summing degenerate traces at the be-

ginning of analysis.

3.2.4 Grouped asymmetry

We compute a linear regression of asymmetry values within a local region of each trace

(∼ 10 − 50 bin pairs). Assuming the linear model of asymmetry values vs. bin pair index is

accurate, the inferred mean value within the group is Ā ∼ Normal(A0, σ
2
A/n), where n is

the number of points in the linear regression and A0 is the population mean at the center

of the the group.

We also assign the variance of the asymmetry values by computing the sample variance

of the residuals (using a denominator of n−2 instead of the usual n−1 to take account of the

two degrees of freedom in the linear regression). Although this gives an unbiased estimator

for the population variance, the assigned variance S2 is itself a random variable and is

distributed according to (n − 2)S2/σ2
A ∼ χ2

ν=n−2, where χ2
ν is a chi-squared distribution

with ν degrees of freedom. Nick Hutzler discovered this in the context of an ordinary mean

(rather than linear regression) during ACME I and discusses some interesting consequences

in his thesis [146, Sec. 4.4.4]. We can adapt much of his insight, with the caveat that for a

linear regression, (Ā − A0)/S ∼ tn−2 instead of tn−1, where tν is a Student’s t-distribution

with ν degrees of freedom (since two degrees of freedom are used to calculate the offset

and slope of a linear regression, rather than one used to calculate the sample mean as

considered in [146]). As a consequence, (Ā − A0)2/S2 ∼ F (1, n− 2), where F (d1, d2) is the

F -distribution with (integer) parameters d1 and d2, which are related to the distribution’s

mean and variance in a somewhat complicated way (again, see [146, Sec. 4.4.4] for a detailed

6. Interestingly, the condition N > 125 would have been impossible to satisfy in ACME I due to the
lower signal, so the variance of individual asymmetry points would be expected to have a more complicated
functional dependence on signal size and asymmetry than in the current generation.
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outline of the basic approach used here). When we compute χ2 from a collection of group-

averaged asymmetries using sample variances, we should not expect the result to follow an

ideal χ2-distribution.

Looking forward a bit, it’s important to realize that when we compute parity sums,

we propagate uncertainties by taking linear combinations of state-basis sample variances.

The distribution of a linear combination of χ2 variables is expressed as an infinite gamma

series.7 Needless to say, we don’t want to delve into this if we don’t have to.

However, we can gain some insight about the behavior of assigned variances for par-

ity sums by noting that the sample variance in each state is comparable, and so the as-

signed variance in a parity component is approximately given by an unweighted sum of

χ2-distributed variables. In general, if these have degrees of freedom ν1, . . . , νN , then the

sum is distributed as χ2
ν1+···+νN

; e.g., see the lecture notes [183]. The χ2-distribution ap-

proaches a normal distribution as the number of degrees of freedom increases, so we can

expect the χ2
red value computed from parity components of asymmetries to be much better-

behaved than the discussion in [146] would imply for state-basis asymmetries. Specifically,

we can replace n− 1 → 16(n− 2) in [146, Eq. 4.67] to see that the expected correction fac-

tors for parity-basis asymmetries are very close to unity. Explicitly, the reduced chi-squared

statistic of parity-basis asymmetry values is

[

χ2
red

](parity)
=

16n − 33

16n − 35
±
√

2

N − 1
× 16n − 33

16n − 35

√

16n− 34

16n− 37
, (3.18)

where N is the total number of groups used to compute χ2
red, and (as a reminder) n is the

number of asymmetry values included in each group. The RHS of the expression above is

written as (mean) ± (standard deviation). We see that the mean of the reduced chi-squared

statistic for values in the parity basis appears quickly approaches 1 for n & 3, while the

standard deviation approaches
√

2/(N − 1), as would be the case for gaussian data. This

conclusion holds even though the mean asymmetry values within a group, computed in the

state basis, are not normally distributed.

7. This result “is obtained in a straightforward manner,” as the abstract of [182] helpfully informs us.
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3.2.5 State-by-state asymmetry and contrast

For each Ñ ẼB̃ state, recall that we collect data in θ̃ = ±1 states. We construct “state-by-

state” asymmetry and contrast values by taking linear combinations of asymmetries values,

A±, measured with θ̃ = ±1:

A = s
2 (A+ + A−)

C = t
2 (A+ − A−)

(3.19)

where s = sign(C) and t = −180◦/(2π∆θ), with ∆θ ∼ 6◦ giving the full waveplate dither

range in degrees. Here, I leave Ñ Ẽ B̃ state designations implicit. The noise in the θ̃ = ±1

states is uncorrelated, but as mentioned previously, the noise in linear combinations of

uncorrelated variables is generally correlated. In particular, σ2
A = s2(σ2

+ + σ2
−)/4, σ2

C =

t2(σ2
+ + σ2

−)/4, and cov(A, C) = st(σ2
+ − σ2

−)/4. We can interpret the covariance as follows:

if A+ tends to have larger swings than A−, then an excursion from the mean in A is likely

to be associated with an excursion in the mean of C in the same direction (when st > 0).

On the other hand, if A− tends to have larger swings than A+, then their excursions will

be anti-correlated. In the case that the variances in the original states are the same, these

two effects cancel out and cov(A, C) → 0.

On average, the fluorescence and therefore σ2
A will be unchanged between θ̃ states, so

E[cov(A, C)] = 0. However, any particular state might have slightly difference fluores-

cence amplitudes due to typical fluctuations in the molecular beam properties, so we ought

to propagate this covariance correctly. I’ve confirmed that the assigned uncertainty in φ

ends up being 5 − 10% percent higher when the covariance is included, and the associated

reduced-chi-squared values (measured for “well-behaved” channels like ωÑ Ẽ and computed

by comparing groups within a block), χ2
red, indicate a better uncertainty assignment when

cov(A, C) 6= 0 is used. Here, χ2
red = 1

N−1

∑N
i=1

(xi−x̄)2

σ2
i

characterizes the size of actual un-

certainties in a data set {xi} relative to nominal (“assigned”) uncertainties σi, and x̄ is

the sample mean of the data. For normally distributed data with variances σ2
i , the ex-

pected value of χ2
red is 1; a value larger than one indicates that uncertainties have been

93



underestimated.

Linear combinations of normal variables are distributed normally, so A and C should be

described approximately by correlated normal distributions.

3.2.6 Phase

In order to understand in detail how we extract the phase from the state-dependent asym-

metry and contrast, we should dwell on the physical origin of the contrast C. Amar Vutha

shows that if the phase is distributed randomly with mean α and variance σ2
α, then the

expected asymmetry is attenuated [144]:

〈A〉 = |C| cos[2α], (3.20)

defining the unsigned contrast |C|. In the particular case considered by Amar, |C| =

exp(−2σ2
α), but the existence of some factor |C| < 1 does not depend on a specific model of

the phase distribution. Comparing to Sec. 2.3.5, we see that α ≡ ωτ−(δθ0+∆θθ̃)+ π
4 (P̃+1)

for our measurement in a state with θ̃ = ±1 and P̃ = ±1. Once again, we define

ωτ − δθ0 ≡ nπ ± π
4 + δφ so that 〈A(θ̃)〉 = ±P̃|C| sin[2(δφ − ∆θθ̃)] ≡ C sin[2(δφ − ∆θθ̃)],

where we’ve chosen a convention for the contrast sign. Here, I have written the asymmetry

explicitly as a function of the polarization dither state θ̃ to distinguish from the θ̃-averaged

and C-corrected asymmetry of Eq. 3.19.

Let us first consider the δφ → 0, ∆θ → 0 limit, where 〈A(θ̃)〉 ≈ 2C(δφ − ∆θθ̃). This

motivates a definition of the measured contrast,

Cm = −A(θ̃ = +1) − A(θ̃ = −1)

4∆θ
, (3.21)

so that 〈Cm〉 = C in this limit. Then taking the asymmetry A averaged over θ̃ states (and

multiplied by the sign of the contrast) as defined in Eq. 3.19, the equation 〈A〉 = 2|〈Cm〉|δφ

is valid.

We will now extend this to the next-leading order in small phases δφ and ∆θ. Here,

δφ ≪ 1 refers to the average phase deviation. Then the asymmetry averaged over θ̃ switches

has expectation value
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〈A〉 ≈ 2|C| δφ(1 − 2∆θ2 − 2

3
δφ2). (3.22)

We can similarly evaluate the expected value of Cm to third order:

〈Cm〉
C ≈ 1 − 2δφ2 − 2

3
∆θ2. (3.23)

Then we can find 〈A〉
2〈|Cm|〉 = δφ(1 − 4

3∆θ2 + 4
3δφ

2)8. In other words, the ratio of the

measured asymmetry to twice the measured contrast gives the phase deviation δφ at leading

order, but also gives correction terms that are cubic in small phases, δφ3 and δφ × ∆θ2.

Thus at leading order, we can define the measured phase to be

δφ(1)
m =

A
2|Cm| , (3.24)

with the property that 〈δφ(1)
m 〉 = δφ + O(δφ,∆θ)3: the measured phase defined in this way

is unbiased up through second order in small quantities.

To take the higher-order terms into account, we try the solution

δφ(1−3)
m =

A
2|Cm|

(

1 +
4

3
∆θ2 − 4

3

( A
2|Cm|

)2
)

. (3.25)

The tricky part arises in the third term, proportional to
(

A
2|Cm|

)3
. When we take the

expectation value of this term, we do not get precisely the cube of the expectation value

of A
2|Cm| . In particular, taking A

|Cm| to be approximately normally distributed, we find that

〈 A
|Cm|

3〉 = 〈 A
|Cm|〉3 + 3〈 A

|Cm|〉σ2
A/|Cm|. However, the correction term, ∼ 〈 A

|Cm|〉σ2
A/|Cm|, is of

comparable order as the terms we neglect in using the approximation 〈 A
|Cm|〉 ≈ 〈A〉

|〈Cm〉| and

in particular is quite small for the generic values of N ≫ 1 in the ACME II measurement.

Thus, Eq. 3.25 accurately gives 〈δφ(1−3)
m 〉 = δφ+ O(δφ,∆θ)5.

The term 4
3∆θ2 is a small (∼ 1%) scaling correction to every phase, which is not very

dangerous. The last term, however, is potentially more interesting because it characterizes

the leading-order nonlinear relationshionship between asymmetry and the measured phase.

8. We take the shortcut of computing the ratio of expectation values, rather than the expectation value
of the ratio A/Cm, because the fractional uncertainty in Cm is small (see [181]).
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The nonlinear term guarantees that parity sums of A
2|Cm| will not isolate components with

distinct physical sources. We normally ignore the nonlinear term during analysis, instead

using δφ(1)
m ≡ A

2|Cm| . Using this approximation is equivalent to adding a cubic term to the

actual phase (i.e., 〈δφ(1)
m 〉 = δφ + O(δφ3)), which allows for nonlinear couplings between

phase components. For example, with nonzero φÑ B̃, φB̃, and φẼ , there will be a corre-

sponding non-zero contribution to φÑ Ẽ
m . Nevertheless, we have not seen evidence that any

such terms are problematic at the precision of ACME II, and we have no models by which

they should be. As a result, all analysis is performed by computing δφ(1)
m only.

Since both A and |C| are described by correlated normal distributions, φ is described

by a ratio distribution. (Taking the absolute magnitude of C introduces no difficulties

since fluctuations never change the sign of C in the region of signal used; however, we

must remember that cov(A, |C|) = s × cov(A, C).) The correlation coefficient between

them, produced simply by random fluctuations in signal between θ̃ = ±1 measurements,

is certainly less than 0.5. As described before, the numerator, A, has a coefficient of

variation that is trivially within the required range. The fractional uncertainty of contrast

is nearly shot-noise limited, so the denominator will have a sufficiently small coefficient of

variation provided N > 125 in each bin pair, just as before. The phase is therefore normally

distributed with mean

µφ ≈ 1

2

(

A
|C| +

σ2
C

C2

A
|C| − t(σ2

+ − σ2
−)

C2

)

. (3.26)

The second term is a very small correction, of order t2

4N ∼ 1/N , to the first term. The

last term should average to 0 since we don’t expect a systematic bias toward more signal

in either θ̃ state, but it could dominate the first two terms in any particular measurement

within the region of the molecule pulse where A ≈ 0 (typically close to the fluorescence

peak). Numerically, assuming 5% number fluctuations between θ̃ states, the last term in

the parentheses is of order 0.1/N , which can be neglected without danger.

The variance of the distribution of φ measurements is

σ2
φ ≈ σ2

C
C2
φ2 +

σ2
A

A2
φ2 − 2t(σ2

+ − σ2
−)

C2
φ. (3.27)
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To compare the first two terms, note that

σ2
A

A2 >
s2(σ2

++σ2
−)/4

0.22

≈ 6.3(σ2
+ + σ2

−)

σ2
C

C2 ≈ t2(σ2
++σ2

−)/4

0.952

≈ 6.3(σ2
+ + σ2

−).

(3.28)

Therefore, the second term usually dominates (in the high-signal regions of the molecular

beam pulse, where A ≪ 0.2), but can be comparable to the first term in the large-asymmetry

regime near the edges of the molecule pulse where A is larger than normal. Indeed, we choose

∆θ so that the uncertainty in the contrast is negligible over most of the region of interest,

but we do not make it large enough to stray too far from the center of the Ramsey fringe

where sensitivity to δφ is maximized.

In ACME I, a state-averaged contrast was used instead of the group-averaged contrast

in order to suppress σ2
C and reduce the uncertainty of the phase in each group. I have

opted not to do this for several reasons: (i) the contrast term mostly inflates the error bars

where the asymmetry is large, which occurs in our apparatus due to velocity dispersion

only near the tails of the molecule pulse. In this region, the signal-to-noise ratio (SNR)

is already relatively low, and changing the analysis routine to improve the SNR there will

not significantly improve the final result. (ii) By using a state-averaged contrast in the

computation of φ, we would correlate nominal phase values in different groups within the

molecular pulse. Intuitively, using a state-averaged contrast does not add information and

therefore shouldn’t actually reduce the final statistical error bar. (iii) The ability to treat

distinct groups as statistically independent is a significant advantage in conceptual and

practical simplicity.

The covariance term in the formula for σ2
φ is not negligible because it is only linear in φ

rather than quadratic. Empirically, I see that including it increases the assigned uncertainty

in φ by several percent. This marginally improves the χ2
red values of parity-basis phase

measurements, calculated among groups for data within a block.
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3.2.7 Change to parity basis

We change from the state basis to the parity basis by taking a linear combination of state-

basis quantities. Since we have determined above that all measured quantities (A, C, φ)

are approximately normally distributed for an ideal measurement, and using the fact that

a linear combination of normally-distributed variables is itself normally-distributed, we

obtain the expected parity-basis quantities. Since asymmetries, contrasts, and phases have

uncorrelated noise across Ñ ẼB̃ states, the variance assigned to a parity-basis quantity is

the average of variances in the state basis. Parity-basis quantities are correlated because

they are computed from the same data as each other (this is analogous to the correlation

between A and C in a particular Ñ ẼB̃ state). In particular, if the covariance matrix in

the state basis is Σstate = diag(~σstate), then the covariance matrix in the parity basis is

Σparity = PΣstateP T , which is non-diagonal. This is important for computing precession

frequencies later.

3.2.8 Precession time

Recall that

τ =
φB̃

measured + nπ4
|g|µB dB

dI I
, (3.29)

where n accounts for the possible rotation of the readout laser polarization basis, rela-

tive to the preparation laser polarization basis, to ensure that φ ≪ 1 in all experimental

configurations.

Here we rely on parameters that are not measured directly via the fluorescence signal.

There is a systematic uncertainty on |g|, dB
dI , and I, with the fractional uncertainty in |g|

being the largest (≈ 1%). We assume that n is known exactly, although the uncertainty with

which the angle can be set between the preparation and readout bases should also introduce

a systematic uncertainty to n. In practice, the systematic uncertainty in τ due to |g| is larger

than the statistical uncertainty in any high-signal group, even for a single block. (This was

not true in ACME I, where the statistical uncertainty was much higher.) However, it is

cumbersome to keep systematic and statistical uncertainties separate during normal data
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analysis, since the assigned statistical uncertainty should integrate down with more data but

the assigned systematic uncertainty should not. Further, the uncertainty in τ is propagated

to the precession frequencies ω, but we don’t usually care about the absolute uncertainty in

the value of τ . Instead, we will primarily be concerned with whether a value shifts within

its statistical uncertainty as we adjust parameters in the system (e.g., whether ωÑ Ẽ depends

on laser detunings). Therefore, including the systematic uncertainty in τ could mask shifts

larger than those expected from statistical fluctuations alone. Whenever we compute a

final value (e.g., of ωÑ Ẽ), in principle we ought to add the systematic uncertainty in τ back

in. Similar arguments apply for other parameters like η, which is computed from quantities

with systematic uncertainty. Note, however, that a 1% systematic uncertainty in τ increases

the ultimate uncertainty in a precession frequency by 1%. For the EDM, this means that a

∼ 100σ effect would have to be measured before the systematic error in τ could introduce

a 1σ shift in the mean.

The uncertainty in τ is therefore computed in a relatively straightforward manner by

propagating the error in φB̃. Since φB̃ is normally distributed under the assumptions previ-

ously discussed, the value of τ within any particular group should be normally distributed

with an offset and scaling determined by n and B. An especially large caveat is warranted

here: this analysis presumes that the molecular beam velocity passing through the detection

region, at a particular time delay from ablation, is perfectly stable over the ∼minute time

scales of a block. We will see in Sec. 4.15.2 that small fluctuations in the molecular velocity

can cause phase noise beyond the level of shot noise.

3.2.9 Precession frequencies

Error propagation for precession frequencies is non-trivial because errors among phases in

the parity basis are correlated, and τ is constructed from φB̃. The full procedure I use is as

follows:

• Compute the (non-diagonal) covariance matrix for phases in the parity basis.
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• Do a “coordinate transformation” from the {φ} “basis” to the {φ, τ} “basis”9 and

compute the covariance matrix in the new coordinates using the standard methods

of error propagation. Due to the dependence of τ on φB̃, there will be non-zero

covariances between τ and each phase component (just as there will be covariances

between τ and each frequency component).

• Do another coordinate transformation to the ω variables and compute the new co-

variance matrix using the standard methods.

• The diagonal entries of the new covariance matrix are the variances of each frequency

component in the parity basis.

Once again, even when we don’t include the systematic uncertainty in the computation of

τ , it is important in principle to properly propagate covariances between τ and party-sum

components of the phase φ. However, unlike what we found for A and φ, using this “proper”

procedure produces essentially the same results as the naive procedure when n = 1. This

is because the relative fluctuations in τ are suppressed by the noiseless nπ4 term, which

dominates φB̃ in the typical signal regime.

The precession frequency ω = φ/τ should once again be described by a ratio distribution.

It is straightforward to check that the conditions for approximate normality are satisfied.

We should therefore expect the mean value of ω, µω, to be given by the usual expression

for the ratio of normally distributed variables [181]:

µω =
φ

τ
+
σ2
τ

τ2

φ

τ
− cov(φ, τ)

τ2
. (3.30)

The second term is a very small (∼ 10−3) overall correction factor to the first term. The

last term is also negligible: in the worst case, we would have cov(φ, τ) = σφστ so that the

last term would be equivalent to σφ

φ
στ
τ
φ
τ , whose first two factors are each much smaller than

unity. Furthermore, the covariance between any component of φ and τ could in principle

9. Of course, this is not a true basis in the sense of linear algebra because the components are linearly
dependent. What I mean here is that there exists a set of nine quantities, fi = φi for i ∈ [1, . . . , 8] and

f9 = τ , that can be related to ~φ by ~f = A~φ for some (non-square) matrix A. The covariance matrix for ~f can

be computed from the covariance matrix for ~φ and the transformation matrix A using standard techniques.
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be non-negligible in one block, but it shouldn’t be strongly biased in one direction over

another10. Therefore, we don’t have any reason to believe that this last term causes any

difficulties.

The variance is

σ2
ω =

σ2
τ

τ2
ω2 +

σ2
φ

φ2
ω2 − 2cov(φ, τ)

τ2
ω. (3.31)

3.2.10 Summary of statistical analysis

It may be useful to recapitulate some key points of this section:

• The excess noise factors of the PMTs inflate the photon shot-noise limit by a factor

of ≈ 1.25, but is expected to have no significant effect on the statistical behavior of

the data otherwise.

• A data cut on low-fluorescence regions of the molecular beam pulse (below ∼ 125

photons per bin pair) is required to ensure good guassian behavior of asymmetry data.

This cut also ensures that our method of background-subtraction is valid (i.e., we never

record unphysical negative photon counts in a polarization bin used to compute the

EDM).

• Although the averaged asymmetry values recorded for groups in the state basis are

not normally distributed (in particular, they are t-distributed), all values in the par-

ity basis are normally distributed to a good approximation (because taking linear

combinations of state-basis quantities “washes out” the non-normal behavior).

• We have carefully considered effects of higher-order (e.g., cubic) corrections to the

calculated phase, based on the sinusoidal profile of the Ramsey fringe and deviations of

the phase from the region of maximum sensitivity, and found that they are negligible.

10. Recall that cov(φ, τ ) expresses a covariance associated with statistical fluctuations, not to be confused

with an actual physical relationship between the average values of φ and τ . For example, 〈φÑ B̃〉 ∝ 〈τ 〉 since

ωÑ B̃ 6= 0, owing to a non-zero difference between the magnetic g-factor in Ñ = ±1 states. However, this
fact has no implications for the covariance in the measured values of φÑ B̃ and τ under constant physical
conditions (i.e., constant unknown true values of φÑ B̃ and τ , which are unavoidably measured with statistical
uncertainty).
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• The polarization basis “dither,” ∆θ, is set so that the contrast measurement con-

tributes only a small fraction of the uncertainty in the measurement of the phase.

The threshold to achieve this condition depends on the largest magnitude of the

asymmetry, |A|, that is used to compute the phase.

• I have argued for the advantages of using a “group-averaged” contrast measurement,

as opposed to the “state-averaged” contrast that was used in ACME I.

• The possibility of covariances among quantities computed from the same data, for

example A and C when computing φ = A
2|C| , should be considered for the most accurate

assignment of uncertainties. In practice, however, these effects are insignificant in the

ACME II data set compared to the effects from technical noise sources that inflate

the uncertainty beyond the level expected for an ideal measurement. Note that for

the ACME II data set, my analysis code fully handles covariances among quantities

throughout.

3.3 Cuts

We apply many data cuts, each of which can be adjusted by analysis parameters. These

ensure that the data used during analysis has the expected properties and is reasonably

“well-behaved.” These are discussed in detail below. All concrete numbers are merely

illustrative and are adjusted as a check on the robustness of the analysis code.

When a block- or higher-level cut is detected, a warning message is displayed and saved

to a text file. A “cut” block is actually completely analyzed, but is not combined with data

from “good” (uncut) blocks when computing superblock- or run-level values (e.g., it is not

used to compute the EDM from the EDM data set). Similarly, “cut” groups are simply

excluded from averaging together with good groups when computing block-, superblock-, or

run-level values. This allows us to check the properties of “cut” groups or blocks as desired.

Any cut can be turned off in the analysis. We have found that reasonable ranges of all

analysis parameters produce resulting EDM values that are consistent within the statistical

uncertainty.
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Block-level setpoints

In addition to the raw fluorescence signal for each PMT during each trace, we save a text

file that contains all additional information relevant to each block. This file is known as the

“header” and contains a separate section for each of the 64 traces. Each section is subdivided

into the following categories: (0) Trace #, Start time, End time; (1) Switch times; (2) DAQ

properties; (3) Switch states; (4) Instrument setpoints; (5) Logging measurements. See

Appendix G for more details on the information recorded in each trace.

Most of the “DAQ properties,” including (although not actually a DAQ property) the

positioning of the ablation laser on the ThO2 target, should not change throughout the

entire block. If a property that should not be changed in fact does change in the middle of

a block, then I throw out that block.

State-level setpoints

The four degenerate traces for each state should have identical instrument setpoints (e.g.,

applied magnetic fields), as given by the header. If they do not all agree in any state, then

I throw out the block.

PMT signal

For each of the 64 traces in a block, I compute the total number of background-subtracted

photons detected for each of the 8 PMT’s, giving a 64×8 table of total photon numbers.

If the ratio between the maximum and minimum entries of this matrix exceeds a certain

threshold (typically 10), then the block is discarded. This could happen because a PMT

is broken (which has never occurred) or because there was no signal in any one of the 64

traces.

Fourier components

I compute the Fourier transform of the fluorescence signal in each state and flag anomalous

peaks. In particular, I use the MATLAB findpeaks function, which returns the frequency,

amplitude, width, and prominence of local maxima in the spectrum. The prominence is
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the height of a peak above the nearest local minimum. I throw out any peaks whose

prominence exceeds the median prominence by less than a certain factor (typically 10). I

then throw out any peaks that correspond to slow-timescale dynamics (less than 10 kHz),

for which we don’t have a clean expected model of the spectrum. Finally, I ignore any peaks

detected within the frequency ranges n×fps ±∆fps, where fps = 200 kHz is the polarization

switching frequency (at which we obviously expect structure in the fluorescence signal) and

∆fps = 100 Hz.

This cut was implemented because we found that noise at 78.9 kHz was contaminating

the PMT’s in early runs due to broadcast electronic noise from unshielded cables; see

Sec. 4.15.1. The default spectrum cut parameters easily flag this problematic frequency

component. If an anomalous frequency is detected, the block is discarded.

Absolute fluorescence threshold

The most important cut in Gen. I was the fluorescence threshold. For each state, any group

with less than ∼ 500 photons per bin pair is excluded from the analysis. More precisely,

all computations are performed for every group (e.g., ωÑ Ẽ is computed even in the low-

signal region), but I only combine data from groups that are “good” in every state when

computing averages over group index or across different blocks.

Fractional pulse height threshold

We have seen strong indications that the statistics of asymmetry values is poorly behaved

near the wings of the molecule pulse. We believe this is due to molecule velocities that

are inconsistent on the trace-to-trace timescale even when considering a fixed time after

ablation. Therefore, I implement a cut on the region of the molecule pulse whose amplitude

falls below some fractional threshold, typically ∼ 15 − 25%. This accounts for a ∼ 5 − 10%

reduction in total signal. In practice, this cut is stronger than all others; i.e., the groups

that are omitted from the analysis are typically exactly those that fail this cut.
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Asymmetry threshold

For each state, any group with unphysically large asymmetries, e.g.,|A| > 0.9, is discarded.

This should only occur due to noise in low-signal regions.

Contrast threshold

For each state, groups with low contrast, e.g., |C| < 0.8, are discarded.

Normality check

For each state, we also perform a statistical test of asymmetry data within each group (i.e.,

the individual asymmetry values used to compute the group-by-group asymmetry) in order

to flag highly non-normal data. In ACME I, Brendon O’Leary and Nick Hutzler used a

Pearson χ2 test, while Ben Spaun did not include a normality check. Neither Brendon nor

Nick found that this cut significantly affected the result, but I have chosen to implement

an analogous cut based on the Shapiro-Wilk test (see [184]), which I will describe below.

All the discussion below is fairly informal, and is intended only to give some conceptual

clarity to what questions these statistical tests are asking. It’s a good idea to get a feeling

for statistical tests by applying them to known distributions. I have confirmed that the p-

values are correctly calibrated for normally distributed data (with any mean and standard

devation), and that the Shapiro-Wilk test does a reasonably good job of rejecting several

types of non-normal data.

With any statistical test, we must set a threshold α that determines how much good data

we throw away. Larger values of α allow more aggressive rejection of bad data at the cost

of losing more good data. In order for a group to survive in a block, it must independently

pass the test for all 16 states. Therefore, if we want to cut a proportion αblock of data, then

we set a significance threshold of α = 1−(1−αblock)16 ≈ α16
block in each state. Since we know

that asymmetry values can have a significant slope within a group, I apply the normality

test to the residuals of the linear regression of asymmetry values within each group.
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Comment on the Pearson χ2 goodness-of-fit test

The Pearson χ2 goodness of fit test essentially constructs a histogram of observations with N

bins and computes χ2 =
∑N
i=1(Oi −Ei)

2/Ei, where Oi is the actual number of observations

in bin i and Ei is the expected number in bin i, given some model. The result should be

drawn approximately from a χ2 distribution. A p-value, giving the probability that data

described by the model would generate a χ2 value exceeding the actual value, is compared

to a threshold α. This means that for a threshold α = 0.05 (for example), 5% of data that

is actually described by the model will be rejected.

There are a couple of drawbacks to the Pearson test: (i) Most importantly, it assumes

reasonably large sample sizes. The rules of thumb are often that one should have N ≥ 5

bins and at least ∼ 5 points per bin. This already means we probably should not use it on

data within a group, where there are typically only ∼ 20 points. (ii) The result depends

somewhat on the way the data is binned. (iii) The threshold α allows one to reliably reject

a known quantity of data that is actually described by the preferred model, but it does not

necessarily reject data that is not described by that model. This is ultimately a limitation

for all tests of normality, but there exist other tests that much more reliably reject most

non-normal data for the same p-value threshold. (iv) The construction of the p-value only

allows one to reject data with χ2 values exceeding some limit, but does not throw out data

with extraordinarily low values of χ2.

Shapiro-Wilk test

We would like to determine whether N values are drawn from a normal distribution. In

the Shapiro-Wilk test, the values are ordered from smallest to largest, y1, . . . , yN . We then

look up the expected ordered values in a sample of N points drawn from a standard normal

distribution, x1, · · · , xN . (In practice, the “expected” values are obtained via Monte Carlo

simulations.) Now imagine creating a scatter plot with points (xi, yi). If the values of yi are

drawn from a standard normal distribution, then this scatter plot will show approximately

a straight line. If the values of yi are drawn from a normal distribution with non-zero mean

but unit variance, then the line on the scatter plot will simply shift up or down. Finally, if
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the values of yi are drawn from a normal distribution with non-unit variance, the slope of

the line will change accordingly.

The Shapiro-Wilk test essentially computes the correlation coefficient between the or-

dered values {yi} and expected ordered values for a standard normal distribution, {xi}.

Since the correlation coefficient is unaffected by changes to the offset or slope of a scatter

line, it should be large when the data {yi} are drawn from any normal distribution. Ordered

data drawn from other distributions will not generally be well-correlated with {xi}.

The closely related Shapiro-Francia test uses simple least squares rather than generalized

least squares to estimate the slope of the regression line between {yi} and {xi}, ignoring

the covariances among ordered values [185]. In some cases (depending on which non-normal

models should be rejected most powerfully), this can be preferable to the Shapiro-Wilk test.

Molecular pulse width

If the total duration of “good” groups in a block is less than 0.5 ms, then the entire block

is cut. This could happen, for example, if a laser becomes unlocked.

3.4 Correlations

We typically log ∼ 40 parameters (such as currents through the magnetic field coils, vacuum

pressures, room temperature, etc.) in the header during each trace, and we log many other

parameters on slower time scales. Further, we compute 64 parity components (including

superblock switches) of A, C, φ, and ω and we can optionally compute auxiliary quantities

like parity components of fluorescecence signals. We therefore have an overwhelming number

of pairs of parameters that we could check for correlations (e.g., “is the room temperature

correlated with ωÑ Ẽ?”). Furthermore, we can examine the autocorrelation of parameters as

a function of group index (i.e., time after ablation), block number, or superblock number,

as well as correlations between quantities and analysis parameters like fluorescence sub-bin

region or group size.
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I especially consider correlations between any superblock component of

{ω, C}{Ñ ẼB̃, ẼB̃, Ñ Ẽ, Ẽ, Ñ} (3.32)

with any block and superblock component of ω, C, or logging parameters (which have 128

parity components, including the θ̃ switch). The explicitly listed block components of ω

and C are “well behaved” in the sense that they should not change with respect to any

aspect of the experimental configuration. As a contrasting example, ωB̃ is “badly” behaved

and is expected to change with parameters such as (obviously) the applied magnetic field

magnitude. For “diagonal” entries, like the correlation of ωÑ Ẽ with itself, I compute the

single-step autocorrelation function over superblocks instead of the trivial self-correlation.

With ∼ 40 logging parameters, this gives us ∼ 80×5, 000 ∼ 400, 000 correlation coefficients.

We’re obviously not going to inspect each of these individually, so we need a method to

automatically flag anomalously large correlations.

To deal with this, I compute the Pearson correlation coefficient,

ρX,Y =
cov(X,Y )

σXσY
. (3.33)

Note that the autocorrelation coefficients ρX,X ≡ ρX(1,··· ,N−1),X(2,··· ,N) must be com-

puted with fewer observations than the correlation coefficients ρX,Y ≡ ρX(1,···N),Y (1,··· ,N).

These will be treated in more detail in the next subsection since they are distributed dif-

ferently than the ordinary correlation coefficients.

The more aggressively we flag potentially significant correlations, the more flags we

will see for data that is not truly correlated. As in ACME I, I typically set a significance

threshold such that we expect ∼ 1 false positive per run analysis. In particular, for a

given pair of parameters X and Y whose sample correlation coefficient is ρX,Y = r, we can

compute the probability p of generating a sample correlation whose magnitude is at least

as large as |r| under the hypothesis that X and Y are drawn from independent normal

distributions (equivalently, the pairs (X,Y ) are assumed to be drawn from a bivariate

normal distribution with vanishing correlation). If the p-value exceeds a pre-determined
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threshold α, then the pair of variables is flagged as having a possible correlation. The

computed p-values will not be accurate for binary or highly discrete variables (electronics

lead configurations, STIRAP translation stage position, etc.), so I do not include those in

my correlation searches. We use α ∼ 1/Ncorrelation coefficients to maintain a reasonable ability

to flag correlations without having to wade through too many false positives.

The p-value is computed assuming the null hypothesis of vanishing correlation, in which

case the quantity t ≡ r
√

N−2
1−r2 ∼ tN−2 follows a Student t-distribution with N − 2 degrees of

freedom [186, Sec. 16.28]. Therefore, the probability that a sample correlation coefficient

with magnitude larger than |r| is observed by chance is p(|t[r]|) = 2× (1−TCDF(|t[r]|, N−

2)), where TCDF is the cumulative distribution function for the t-distribution.

The statistical properties of the sample correlation coefficient r are not completely

straightforward in general. The statistic r is the maximum-likelihood estimator (MLE)

of the true correlation ρ for a bivariate normal distribution, but this is biased toward

smaller magnitudes [187].11 An expression for the minimum-variance unbiased estimator of

ρ can be written in terms of a hypergeometric function if needed. However, because we can

easily compute correctly calibrated p-values for the null hypothesis (both variables tested

are normally distributed and uncorrelated), we can maintain the standard interpretation of

our significance testing even with a biased estimator of ρ. The primary consequence of the

biased estimator is to reduce the power of the test somewhat (that is, the number of false

positives is unaffected but the number of true positives for discovering correlated variables

is slightly reduced).

If we add too many logging parameters or parity sums, then we must set α ≈ 0 (in order

to not have to examine an unwieldy number of false positives), impairing our ability to

resolve true and potentially important correlations, for example between the EDM channel

and some other important channel like ωB̃. To deal with this, I set different significance

thresholds for different “classes” of correlations. For each of the combinations of parameters

in Table 3.1, we set α ∼ 1/Nρ.

11. The MLE of a random variable is often biased. For example, the MLE estimator of the variance is
computed as σ2

MLE = 1
N

∑N

i=1
(xi − x̄)2 using the same variance with the intuitive normalization factor 1/N ,

but the unbiased estimator uses normalization 1/(N − 1).
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X Y NX NY Nρ = NXNY 1/Nρ

ωÑ Ẽ {ω, C}block 1 16 16 6 × 10−2

{ω, C}superblock 1 128 128 8 × 10−3

{logging}block 1 ∼ 500 ∼ 500 2 × 10−3

{logging}superblock 1 ∼ 4000 ∼ 4 × 103 3 × 10−4

ωÑ Ẽ{SB} {ω, C}block 8 16 128 8 × 10−3

{ω, C}superblock 8 128 ∼ 1 × 103 1 × 10−3

{logging}block 8 ∼ 500 ∼ 4 × 103 3 × 10−4

{logging}superblock 8 ∼ 4000 ∼ 3 × 104 3 × 10−5

{ω, C}”good” {ω, C}block 10 16 160 6 × 10−3

{ω, C}superblock 10 128 ∼ 1 × 103 1 × 10−3

{logging}block 10 ∼ 500 ∼ 5 × 103 2 × 10−4

{logging}superblock 10 ∼ 4000 ∼ 4 × 104 3 × 10−5

{ω, C}”good”{SB} {ω, C}block 80 16 ∼ 1 × 103 1 × 10−3

{ω, C}superblock 80 128 ∼ 1 × 104 1 × 10−4

{logging}block 80 ∼ 500 ∼ 4 × 104 3 × 10−5

{logging}superblock 80 ∼ 4000 ∼ 3 × 105 3 × 10−6

Table 3.1: Data sets for which we search for correlations. There are assumed to be ∼ 30
logging parameters decomposed into θ̃-even and θ̃-odd parts. The X column is organized
from most important to least important parameters to find correlation with, and the Y
column consists of larger data sets that we can try to cross-correlate with the quantities
of interest. Here, “SB” denotes any superblock parity component, and “good” denotes the
most well-behaved block components, Ñ ẼB̃, ẼB̃, Ñ Ẽ , Ẽ , Ñ . Some of the parameters in the
Y column will not be normally distributed under some circumstances (e.g., ωB̃ is bimodal
when a |B| switch is implemented), in which case the observed sample correlation coefficients
will tend to be smaller in magnitude than in the null hypothesis assumes. The column 1/Nρ

gives the threshold α required to see one false positive for each type of correlation on average.
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A consistent correlation that emerges from this sort of analysis, which we will discuss

at length in Sec. 4.9, is between ωÑ Ẽ and |C|Ñ Ẽ , as well as between ωÑ Ẽ and |C|Ñ ẼB̃.

Note that the p-values are calibrated for normally distributed data (as with almost any

standard statistical test). For real data, these calibrations are not going to be particularly

accurate for extremely small p-values (e.g., when searching for correlations between any

component of a frequency or contrast and any component of a logging parameter, which

requires calibrated p-values on the order of 10−6). Therefore, although this machinery is set

up to search for extreme correlations among all kinds of parameters, it should be expected

to be most useful when we are searching in categories where relatively modest correlations

are of interest, with α ∼ 0.01 − 0.1.

Sample autocorrelation coefficients

As mentioned in the previous section, we consider autocorrelation coefficients for quantities

of interest throughout the EDM data set (and any particular experimental run). The single-

lag sample autocorrelation coefficient is defined as

rX,X =

∑N−1
i=1 (xi − x̄)(xi+1 − x̄)
∑N
i=1(xi − x̄)2

, (3.34)

where x̄ is the sample mean over the entire data set. Unlike for the ordinary correlation

coefficient, the sample autocorrelation coefficient will tend to be non-zero even when the

underlying data is randomly distributed. Define the deviation from the mean, di ≡ xi − x̄,

so that the average deviation among other measurements must be nonzero, E[xj 6=i − x̄] =

−di
N , following from E[x − x̄] = 0. This suggests that data in a random sample have a

negative autocorrelation on average. In fact, more careful analysis shows that E[rX,X ] =

− 1
N for a random sample, while Var[rX,X ] = (N−2)2

N2(N−1) . It turns out that the distribution

of the sample autocorrelation is extremely complicated and–rather surprisingly–there is no

consensus about how to test the null hypothesis of vanishing correlation in the underlying

distribution. An excellent starting point is [188], which discusses many surprising results

that one ought to be aware of. In no particular order: rX,X has nontrivial minimum and

maximum possible values that depend on the sample size N (but never exceeding unity in
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magnitude); the first four central moments E[(rX,X )i] are given as function of N and the lag

(always equal to one in this document); and the efficacy of various approximate hypothesis

tests is explored.

Traditionally, an asymptotic normal approximation Normal(µ = 0, σ2 = 1
N ) is often

used to fit the probability density function P (rX,X), but because P (rX,X) has a sharp cutoff

somewhere within −1 < rX,X < 1, this tends not to work very well near the tails where

accuracy is most important for hypothesis testing. The results can be improved by using a

normal approximation with the exact mean and variance, Normal(µ = − 1
N , σ

2 = (N−2)2

N2(N−1)),

but this suffers from a similar problem in the tails. I’ve confirmed via simulations that these

models don’t perform very well for small p-values (i.e., below ∼ 0.01).

A preferable model is to use the four-parameter Pearson distribution, which is obtained

as the solution to a particular differential equation. Depending on the relationships among

parameters, the Pearson distribution is traditionally broken into seven types, correspond-

ing to a normal distribution, generalized beta distribution, gamma distribution, Student

t-distribution, etc., including non-standard distributions. We parametrize the Pearson dis-

tribution in terms of its mean, variance, skewness, and kurtosis, all of which we can compute

for P (rX,X) by using the known central moments in [188]. Note that the Pearson distri-

bution is merely a very flexible four-parameter distribution that can be readily computed

numerically, and which can be made to match “reasonably” arbitrary statistical distribu-

tions, but it is not chosen for any other special properties.12

For the sample autocorrelation coefficient with N ≥ 4, we obtain a Pearson Type I

distribution (with N = 4 actually a Type II, which is a special case of Type I). This

distribution has finite support; i.e., it vanishes beyond a certain range. Thus fitting to this

Pearson distribution largely avoids the problems of a normal distribution in the tails, where

we want to calibrate very small p-values.13

12. John von Neumann supposedly said, “with four parameters I can fit an elephant.” One can easily
imagine that he had the Pearson distribution in mind.

13. In the special case that the support ranges from r = 0 to r = 1, the Pearson Type I distribution
becomes a β distribution; for this reason, the Pearson Type I distribution is also called a “generalized β
distribution.” For N = 3, the resulting parameters give a Pearson Type IV distribution, which is not related
to any standard distribution but is, in any case, supported over the entire real line. My p-value calibrations
using a Pearson distribution for N = 3 are very poor, as we might expect from this fact.
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Using the four-parameter Pearson distribution, we get acceptable p-value calibration

for N ≥ 5 and excellent calibration for N ≥ 10. This calibration is fairly insensitive to

the chosen rejection threshold α. By contrast, the built-in MATLAB autocorrelation test,

based on the Ljung-Box Q-test, has a significantly larger miscalibration that depends fairly

sensitively on the chosen threshold, as would be expected from the discussion in [188].

The Ljung-Box Q-test is also much slower, probably since the test statistic requires the

computation of the autocorrelation function at all possible lags.

Effect of uncertainty

It isn’t straightforward to adapt the standard computation of the correlation coefficient

for the case in which the quantities being correlated have time-dependent uncertainty, or

“heteroscedasticity.” This is generically the case at some level because superblocks don’t

always have the same signal level. Intuitively, we might expect uncertainties not to affect

testing of the null hypothesis: if x and y are uncorrelated, then the observed values X =

x + ǫx and Y = y + ǫy will also be uncorrelated, where ǫx,y represent some uncorrelated

measurement errors on any point (x, y). Therefore, a test of the hypothesis that X and Y are

uncorrelated is a valid test of the hypothesis that x and y (the true values) are uncorrelated.

In the case that ǫx,y ∼ Normal(0, σ2
x,y) with σ2

x,y constant over all measurements, this

reasoning turns out to be correct. More discussion along these lines can be found in [189,

Sec. 1.3]. In other words, hypothesis testing can be performed just as if there were no

measurement uncertainties. The primary effect of these uncertainties is to reduce the power

of the test so that non-zero correlations are less likely to be identified as measurement

uncertainties grow larger.

This intuitive reasoning breaks down when uncertainties vary from measurement to

measurement; see [190, Sec. 9.1.2]. Unfortunately, this is always the case for us due to

signal fluctuations. That said, the problems with naive null hypothesis testing appear to

be most severe with large sample sizes, which we often don’t have in a dataset of interest

(e.g., a systematic check).

Nevertheless, I compute naive correlation and autocorrelation coefficients, with the un-

derstanding that neglecting to take measurement uncertainties into account will reduce our
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Figure 3.1: Statistics of the EDM data set (1050 superblocks). Data are combined from four
magnetic field magnitudes, B = 0.7, 1.3, 2.6, and 26 mG. Because one of the mechanisms for
excess noise (beyond shot noise) depends on B, we compute χ2

red(B) separately for each value

of B, and show distributions of
[

ωÑ Ẽ
i − 〈ωÑ Ẽ〉

]

/[σiχ
2
red(Bi)], where ωÑ Ẽ

i is the i-th value
of the EDM precession frequency, σi is its shot-noise uncertainty, and Bi is the magnitude
of the magnetic field for the i-th data point. (a) Histogram of EDM-channel frequencies in
units of their expected uncertainty (shot noise rescaled by χ2

red), relative to the weighted
mean over the entire data set. Errorbars show the expected variation in the height of each
bin of the histogram. A black standard normal distribution is overlayed. The fit is best in
the central region, but begins to stray from the observed distribution beyond ±1.5 standard
deviations. (b) Normal probability plot, comparing the cumulative probability distribution
of EDM data to that expected for a standard normal distribution (red line). The deviation
is largest beyond ±2 standard deviations.

power to resolve non-zero correlations and, to some extent, cause our p-values to be miscal-

ibrated. We accept all of these drawbacks to avoid excessive complication in the analysis.

These considerations are, at any rate, swamped by the non-gaussian distribution of mea-

sured values throughout the EDM dataset caused by experimental imperfections (see Sec.

4.15).

3.5 Measurement with non-ideal statistics

The statistical analysis in Secs. 3.2-3.4, for the most part, assumes ideal normally dis-

tributed data. We have shown that for an ideal measurement, data are (to a good approxi-

mation) normally distributed, and this was seen in ACME I [129]. Unfortunately, in ACME

II there are multiple noise sources that can contribute to additional noise, not arising from

photon shot noise, to the distribution of ωÑ Ẽ . These noise sources will be examined in Sec.
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4.15. This noise has two effects: (1) the width of the distribution of ωÑ Ẽ , and therefore the

uncertainty in the mean value, σωÑ Ẽ , is increased relative to the shot-noise level; and (2)

the values of ωÑ Ẽ are not normally distributed. See Fig. 3.1 for the empirical distribution

of the EDM data set.

If the noise only caused the uncertainty of ωÑ Ẽ to increase, but did not change the

distribution of values, then it would be fairly trivial to handle (though obviously still un-

desirable) using standard methods such as increasing the errorbar by a factor of
√

χ2
red (a

measure of how much the errorbars are underestimated). For data that is not normally dis-

tributed, more advanced techniques should be used. In particular, for noise sources whose

distribution is not well understood, it is appropriate to use non-parametric statistics; i.e.,

we do not rely on the data being described by any particular distribution at all, though

certain reasonableness properties, such as finite variance, are still assumed to hold. We

have chosen to use the M-estimator approach, where M stands for “maximum-likelihood.”

To justify this choice, let’s review standard statistical parameter estimation.

3.5.1 Robust parameter estimation

There are two parts to an ordinary statistical problem: (1) How do the data depend on

some parameters on average, and (2) how are the residuals of the data about that aver-

age distributed? For example, in the simplest linear regression, we suppose (1) the i-th

measurement has value yi = β0 + β1xi + ǫi, where β0 and β1 are parameters (offset and

slope), xi is the value of a variable in the i-th measurement, and ǫi are residuals. We then

further suppose that (2) ǫi ∼ N(0, σ2) is normally distributed with mean 0 and variance

σ2, identically with and independently of the residuals for all other values of i. The goal is

to compute, from data {yi}, some estimates β̂0 and β̂1 of the true parameter values β0 and

β1. The estimates will have uncertainty; i.e., they will not exactly equal β0 and β1 for any

particular set of results {yi}.

In the approach of maximum-likelihood estimation, we ask: what values of β̂0 and β̂1

maximize the probability of observing the set of results {yi}? Suppose we assume that

β0(1) = β̃0(1). Then the likelihood of observing {yi} is L = Πif(yi−β̃0−β̃1xi
σ ),where f(ǫ) =

1√
2π

exp
[−ǫ2/2] is a standard normal distribution. Note that for this particular distribution,
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L = Πif(yi−β̃0−β̃1xi
σ ) = f(

∑

i
yi−β̃0−β̃1xi

σ ). Then 2σ2 ln(
√

2πL) = −∑i(yi − β̃0 − β̃1xi)
2. If

the values of β̃0(1) maximize the likelihood L, then they minimize the sum of squared

residuals,
∑

i(yi − β̃0 − β̃1xi)
2. This is a straightforward way to see why least-squares

regression is used to obtain estimates β̂0(1) of the parameters describing linear data.

The key point for us is that the “sum of squares” rule comes directly from an assumption

about the distribution of residuals; and hence, when the distribution of residuals is non-

normal, our statistical procedures must be modified. Suppose, for the moment, that the

probability density of residuals is f(ǫi) ∝ exp[−g(ǫi)]. Then by same reasoning we used for

normally distributed residuals, the maximum likelihood estimator minimizes
∑

i g(ǫi). We

must assume some form for g(ǫi) or we simply cannot use statistics; there is absolutely no

way out of this.

This is rather unfortunate since we stated before that we would like to use a “non-

parametric” model; i.e., we don’t know what form g(ǫi) takes in reality. It turns out that

there are certain models for the residuals (i.e., certain functions g(ǫi)) are “robust” in the

sense that resulting parameter estimates are accurate (on average) and reasonably precise

for a wide variety of actual, underlying residual distributions. In other words, our model for

the residuals need not be correct as long as the resulting estimates are consistent with the

true values. The study of such model distributions belongs to the field of “robust parameter

estimation.” See [191] for an extremely readable report on the subject; [192] also gives a

broad overview, and more technical details are available in [193]. While these statistical

techniques are used less widely than the simpler tools designed for gaussian-distributed

data, they are widely accepted–see, for example, their application to high-energy physics

analysis in [194].

Generally speaking, parameter estimation with robust M-estimators is equivalent to

assuming a long-tailed distribution of residuals. As a result, any extreme outlier (e.g., an

event at +10σ from the central value) is taken as less strong evidence of a shifted mean.

More formally, the choice of assumed residuals distribution f(ǫi) is equivalent to a choice

of weights used in the computation of a weighted mean, x̄ =
∑

i xiwi/
∑

j wj . In the case of

normally distributed residuals with (possibly unequal) variances σ2
i , the weights are simply

wi = σ−2
i . When a generic distribution of residuals f( ǫi

σis
) is assumed, where s is some scale
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factor of the distribution (e.g., s = 1 for a normal distribution), the weights are a function

of the residual values.

The particular situation relevant to the ACME II data is not typically covered in detail

in standard texts, so let’s go through it carefully. We have data points {xi} and associate

each value with an estimated uncertainty σi. However, due to additional noise in the system,

we allow for the possibility of an overall “scale factor” s so that the actual uncertainty in

each point is σi → sσi. This way, the relative uncertainty among data is constant, but a

calculation of s will correct for any underestimation of the overall scale of uncertainty in

the data.

We assume a (for now, generic) distribution of residuals f(xi−x̄
σis

),where x̄ is the mean

of the data set, which we want to estimate. For shorthand, we define the residual ǫi ≡

xi − x̄. Let us write f( ǫi
σis

) = exp(−g( ǫi
σis

)). Then we want to choose an estimate of the

mean, x̄, such that the likelihood of obtaining the observed data is maximized. As we saw

before, this is equivalent to minimizing
∑

g( ǫi
σis

) with respect to x̄. Then ∂
∂x̄

∑

g( ǫi
σis

) =

−∑ g′( ǫi
σis

)/(σis) = 0. Let us define wi ≡ g′( ǫi
σis

)/(ǫiσi) so that
∑

wiǫi = 0 and, finally,

x̄ =
∑

wixi/
∑

wi. Note that for normally distributed residuals where g( ǫi
σis

) =
ǫ2

i

2σ2
i s

2 , the

weights are wi = 1
σ2

i
(up to constant factors of s that cancel in the estimation of x̄).

Now let us specify s based on the data. For normally distributed data with correctly

assigned uncertainties σi, the model will match the data for s = 1. We therefore want to

calculate s such that it corresponds to a robust assessment of the characteristic standard

deviation of residuals (normalized to the assumed standard deviations). The conventional

way to characterize s is by computing the “median absolute deviation,” median[|xi−x̄
σi

|],

where x̄ is itself an estimate of the mean of data points. In particular, we define s = 1.4826×

median[|xi−x̄
σi

|] so that normally distributed residuals, with correctly assigned uncertainties

σi, have an expected value of s = 1. The median absolute deviation is a more robust

estimate of the scale of a distribution (i.e., more insensitive to disturbance by extreme

outliers) than the sample standard deviation.

There is a slight problem with this prescription: the estimate of s requires an assumed
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value of x̄, and the estimate of x̄ requires an assumed value of s14. For this reason, we

compute an M-estimator iteratively: use ordinary gaussian statistics to obtain an estimate

of x̄, then compute an estimate of s. Use this to revise the estimate of x̄, which is used

in turn to revise the estimate of s. We repeat until the value of x̄ changes by an amount

less than some tolerance (e.g., a fractional change of 10−4 for consecutive iterations). This

typically takes only a few iterations.

To compute the ACME II EDM result, we used the Huber weights,

wi =























1
σ2

i
× 1

∣
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∣

ǫi
σis

∣
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1
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i

a
∣
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ǫi
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∣

∣
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∣

∣

ǫi
σis

∣

∣

∣ ≥ a.
(3.35)

Here, we take a typical value of a = 1.345. This means that we begin to weight observations

less strongly when residuals lie outside 1.345σis, where σis is an empirically rescaled uncer-

tainty for the i-th obervation. For this particular distribution, no data are strictly “cut”;

i.e., w 6= 0 for all values of the residuals xi − x̄.

Another common choice of weights in robust parameter estimation is the Tukey bisquare:

wi =



















1
σ2

i

(

1 −
(∣
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∣
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)2
)
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∣
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0
∣

∣

∣

ǫi
σis

∣

∣

∣ ≥ a,

(3.36)

where for this distribution the conventional parameter value is a = 4.685. Note that for

this choice of weights, extreme outliers (residuals greater than 4.685σis) are not included

in the computation of x̄ at all.

In both of these cases, the value of a is chosen so that the resulting estimates of x̄

are “95% efficient” in the case of perfectly gaussian data: in other words, the variance of

estimated values of x̄ using least squares (the optimal procedure for perfectly gaussian data)

is 5% smaller than the variance of estimated values using the robust M-estimators. However,

for a wide variety of non-gaussian data, the M-estimators are more efficient than least

squares; i.e., estimates using the naive least squares have higher variance in such cases. For

14. Except in the model of normally distributed residuals, where the scale factor completely drops out of
the weights wi!
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both the Huber and Tukey bisquare weights, the results of gaussian statistics are recovered

when a → ∞. We can generally interpret the parameter a as the characteristic scale (in units

of standard deviations) where the associated distributions of residuals deviates significantly

from a normal distribution.

We have found for the EDM data set that our results are consistent (within 10% of both

the mean value and errorbar) when computed using weighted least squares (with uncertainty

scaled by
√

χ2
red), Huber weights, Tukey bisquare weights, or a trimmed mean15.

3.5.2 Uncertainty of the M-estimator mean: bootstrapping

Once we’ve obtained the mean (e.g., of the EDM value) using a robust M-estimator, we

must compute the associated uncertainty. One reliable way to do this for non-gaussian data

is the bootstrap technique. See [196] for a broad overview, and [197] for the seminal paper.

To understand the bootstrap approach, let’s review the interpretation of the “usual”

uncertainty in the mean. If we draw N values {xi} from a normal distribution with mean

x̄ and standard deviation σ, then we will obtain some estimate of the mean x̃, where

〈x̃〉 = x̄ but typically x̃ 6= x̄ in any particular set of measurements. The uncertainty in the

mean essentially tells us: if we draw another set of N samples from the same distribution,

how far is the new sample mean, x̃new, likely to deviate from the observed sample mean

x̃obs.? Specifically, what is the standard deviation of observed values of x̃ over many, many

instances where we take N samples from the distribution?

In the simple case of a gaussian distribution with standard deviation σ, the uncertainty

in the mean is σ/
√
N . However, we run into two problems with realistic data: (1) the true

standard deviation of the distribution, σ, is not known, and (2) the form of the distribution

is not typically known. Therefore, we may not be able to apply simple formulas to calculate

the uncertainty in x̃–and of course we cannot typically check x̃ empirically by recollecting

entirely independent data sets many times.

To deal with this, we model the underlying distribution by assuming that the data

15. This is another method of robust parameter estimation where some fraction of highest and lowest values
are “thrown out” before estimating the mean. Note that the YbF EDM experiment used this approach[122];
see [195] for details.
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are drawn from by the observed distribution of data. In particular, we use the “empirical

distribution function,” which is a step-wise continuous cumulative distribution function that

increases by 1
N at the value of every observed data point. For the empirical distribution

function of the EDM data set (however, without lines drawn to join data points), see Fig.

3.1(b).

Now assuming that the actual data are drawn from the empirical distribution, we can

simulate many “independent” experiments. Specifically, we can draw a “bootstrap sample”

of N values {x′
i}, taken (with replacement) from the empirical distribution, and then we

compute the sample mean of these values, also called a bootstrap mean, x̃′. We repeat,

drawing another N values {x′′
i } and compute x̃′′. After doing this for many bootstrap

samples (typically a few thousand), we can examine the “bootstrap distribution,” i.e., the

distribution of bootstrap means. We assume that the uncertainty in the observed mean is

well-described by the width of the distribution of bootstrap means. In particular, we define

the ±1σ uncertainty interval of our EDM result to be the interval that contains 68.27% of

bootstrap samples around the mean of the bootstrap distribution. For the EDM dataset,

the bootstrap distribution is, to a good approximation, a normal distribution.

Note that our “measured” mean is still the M-estimator value of the mean from the

empirical dataset, not the mean value of the bootstrap distribution.

As mentioned in Sec. 3.5.1, the uncertainty assigned in this way is reasonably insensitive

to the method chosen to calculate the mean (i.e., least squares scaled by
√

χ2
red, Huber

weights, Tukey bisquare weights, or trimmed mean).
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Chapter 4

Systematic errors and excess noise

A piston that had been thrusting

left-right, left-right, for millennia

suddenly began shifting right-left.

Nothing broke, but everything changed.

2920, The Last Year of the First Era

In this chapter, I will review how we search for systematic errors, how they can generally

arise given our experimental protocol, and describe systematic errors that were discovered

in the ACME II measurement. All such effects were suppressed to a level below the statis-

tical sensitivity. Further, I will consider mechanisms of noise that increased the statistical

errorbar beyond the shot-noise level.

4.1 Measuring a systematic error

A systematic error is any effect that contributes an offset to ωÑ Ẽ other than the electron

EDM interaction. All systematic errors should arise from “normal” physics, i.e., they are

not actually T -violating. They therefore cannot arise solely from the internal dynamics

of the ThO molecules, but instead must couple to some “laboratory” parameters such as

external fields or characteristics of our lasers. A list of parameters varied in our search for

systematic errors is given in Table 4.1.

As a concrete example, suppose we wish to check the dependence of the nominal EDM
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Category I parameters Limit < σstat.

Magnetic fields

B-field gradients (nr and B̃): ∂Bz
∂z , ∂Bz

∂y , ∂Bx
∂x , ∂By

∂y , ∂By

∂x , ∂Bz
∂x X

Non-reversing B-fields: Bnr
z X

Transverse B-fields: Bnr
x , Bnr

y X

Transverse B-fields: BB̃
x , BB̃

y ✘

Ẽ-correlated B-field: BẼ
z X

Electric fields
Non-reversing E-field: Enr X
Field plate ground voltage offset X
Laser detunings
Detuning of refinement and readout lasers: ∆ref , ∆read X
1-photon, 2-photon detunings of STIRAP lasers X
P̃-correlated detuning: ∆P X
Ñ -correlated detuning: ∆N X
Detuning of rotational cooling lasers ✘

Laser powers

Ñ Ẽ-correlated power: P Ñ Ẽ X
Power of refinement and readout lasers: Pref , Pread ✘

Ñ -correlated power: P Ñ ✘

P̃-correlated power: P P̃ ✘

Readout X- and Y -dependent laser power ✘

Laser pointings/position along x̂
Pointing change of the refinement and readout lasers ✘

Readout X- and Y -dependent laser pointing ✘

Position of refinement beam along x̂ X
Molecular beam clipping
Clipping of the molecular beam along ŷ and ẑ X

Category II parameters

Experiment timing

Readout X and Y polarization switching rate
Allowed settling time between block switches
Analysis

Signal size cuts, magnitude cuts, contrast cuts
Spatial dependence of fluorescence recorded by the 8 PMTs
Variation with time within the molecular pulse
Variation with time within the X and Y polarization cycle
Search for correlations with all ω and C parity components
Search for correlations with auxiliary monitored parameters
Four sets of analysis code by different people

Table 4.1: Parameters varied to search for systematic errors. Category I parameters are
varied far from typical values. Category II parameters have no ideal value, but can be still
be varied to search for unexpected effects. Second column: not all parameters have enough
range (and/or integration time) to set a limit below the statistical sensitivity.
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Figure 4.1: A benign systematic error check showing the dependence of ωÑ Ẽ on a common
voltage offset to both field plates, Voffset. We measure the slope separately for multiple
values of the applied magnetic field B (here with 1, 2, and 19.5 mA applied to the field
coils, corresponding to ≈1.3, 2.6, and 26 mG), and also compute an overall slope based on
combining all data. The EDM channel is shown with the blind, so only the slopes contain
physically meaningful information. Partially transparent bands show 1σ uncertainty on the
fits. The slopes are consistent with 0.

value against an overall offset voltage of the electric field plates, common to both plates so

the applied electric field is unchanged, Voffset. In this case, the ideal value is Voffset = 0 (even

though we don’t have a model for why a “non-ideal” value would be problematic in this

case!). We measure the actual value, and variations in that value over time, using a digital

multimeter connected to the field plate leads to obtain a typical deviation from the ideal

value |∆Voffset| < 20 mV. We then deliberately apply an imperfection much greater than

the typical value (when possible), e.g., Voffset → 1000 mV and measure the EDM under

these non-ideal conditions. By comparing to the EDM obtained under ideal conditions,

we can infer a “systematic slope” dωÑ Ẽ

dVoffset
. The EDM shift associated with this slope under

ordinary conditions is dωÑ Ẽ
Voffset

= dωÑ Ẽ

dVoffset
∆Voffset. Our uncertainty in this systematic shift is

computed by propagating the uncertainty in both the slope and measurement of ∆Voffset,

using standard error propagation.

The general approach always follows this model: for a parameter p, we must measure the

ordinary deviation from ideal conditions, ∆p, as well as a systematic slope dωÑ Ẽ

dp computed

by exaggering p beyond its typical range under normal conditions. We then compute a

systematic shift
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dωÑ Ẽ
p =

dωÑ Ẽ

dp
∆p (4.1)

and compute an uncertainty in the shift by propagating uncertainties in the slope dωÑ Ẽ

dp

and offset ∆p. The slope dωÑ Ẽ

dp is calculated via linear regression with data under both ideal

conditions and with a deliberately large value of p. The uncertainty in the slope is computed

by propagating uncertainties using standard methods, and rescaling the resulting error bars

by
√

χ2
red. computed from the residuals of the linear fit (see Fig. 4.1).

The characteristic deviation from ideal conditions (which can be either an average value

or a limit, depending on the parameter) is computed either from ordinary experimental

data or from auxiliary measurements. For example, we will see that for p = Enr, the non-

reversing component of the applied electric field, the typical deviations from ideal conditions

∆Enr are measured using microwave spectroscopy. On the other hand, when we consider a

possible leakage of ωẼ into ωÑ Ẽ due to a small difference in g-factors between the Ñ = ±1

states, we measure the average ∆ωẼ = 〈ωẼ〉 from the EDM data set.

A list of varied parameters is shown in Table 4.1. What we would like is that (1) the

systematic shift is consistent with zero, and (2) the uncertainty in the systematic shift

is smaller than the statistical sensitivity of the ACME II EDM measurement, δωÑ Ẽ
stat. =

373µrad/sec.

Most of this chapter will be concerned with parameters for which desideratum (1) fails:

sometimes, we unexpectedly found that a systematic shift is not consistent with zero. In

this case, we must understand the mechanism for the non-zero systematic slope, dωÑ Ẽ

dp , and

suppress it until we are confident that its corresponding systematic shift dωÑ Ẽ
p is significantly

smaller than δωÑ Ẽ
stat..

Furthermore, we cannot always achieve (2): that is, we do not always set a limit on a

systematic shift that is smaller than the statistical uncertainty of the EDM measurement.

To see why, suppose we deliberately apply an experimental imperfection with magnitude dp,

while ∆p is the degree of the imperfection under ordinary conditions. Further, suppose that

we take data with a deliberately large value of p for duration Tp, while the EDM dataset

under ideal conditions is collected over a duration T . Then the statistical uncertainty in
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the systematic shift is approximately δωÑ Ẽ
p ∼

√

T
Tp

∆p
dp δω

Ñ Ẽ
stat..

In reality, we spend several months collecting EDM data under ideal conditions in or-

der to obtain δωÑ Ẽ
stat. = 373µrad/sec, and it is not practical to collect this much data for

every systematic check parameter p. As a result, in cases where |∆p
dp | . 10, the statistical

uncertainty in the systematic shift dωÑ Ẽ
p is typically comparable to or larger than the sta-

tistical uncertainty in the nominal EDM-channel value ωÑ Ẽ . For example, we check that

the nominal EDM measured does not depend on laser pointings, but it is impractical to use

10× the “ordinary” laser pointing misalignment (≈ 200µrad). In particular, misaligning

the laser beams to such a large degree would significantly change the addressed Doppler

profile and the position of the preparation and readout of the molecular population. Any

data obtained under these dramatically different experimental conditions would be of ques-

tionable relevance to the ordinary EDM measurement. See the second column of Table 4.1

for parameters where a limit on the systematic shift was observed to be smaller than the

statistical sensitivity of the EDM measurement.

We also distinguish parameters according to two categories. Category I parameters have

an ideal value in the experiment (zero in most cases). The common voltage offset to the

electric field plates is a Category I parameter. On the other hand, Category II parameters

have no specially ideal value. For example, the rate of polarization switching between X and

Y readout lasers is essentially arbitrary (provided it is sufficiently fast that the excitation

of every molecule is saturated for both lasers). We normally use 200 kHz but also check for

an EDM shift when using a 100 kHz polarization switching rate. We furthermore regard all

of our analysis parameters as being in Category II: for example, there is no a priori ideal

value for the number of asymmetry values used to compute a grouped asymmetry, but we

do check that our EDM result is robust against different reasonable choices for such a value.

For most systematic error mechanisms where a non-zero systematic slope dωÑ Ẽ

dp was

observed, we interleave “intentional parameter variations” (IPVs) with data taken under

ideal conditions. During an IPV measurement, some parameter is deliberately applied with

magnitude far beyond its ordinary conditions, dp ≫ ∆p. This allows us to measure the

systematic effect under nearly identical conditions as used in the EDM measurement (e.g.,

we take data both with and without IPVs on the same day, with the same optics alignment,
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etc.). The central EDM value, before subtracting any systematic error shifts, is computed

only from data taken under ordinary conditions. As we will see, we use five distinct IPVs.

In the notation of Fig. 2.3: a = Pref , where the power of the refinement beam is tuned

to zero (via a mechanical beam block); b = Enr, where a large non-reversing component

of the electric field (150-300 mV/cm) is applied; c = P Ñ Ẽ/P nr, where a large correlation

of the refinement laser power with the EDM switches Ñ Ẽ is applied (P Ñ Ẽ = 0.1 × P nr);

d = ωÑ Ẽ
ST , where a large EDM-correlated precession frequency (∼ 5 rad/sec) associated with

the STIRAP state preparation is induced; and e = ∂B
∂z , where a magnetic field gradient of

∼ 1 mG/cm is applied in the interaction region. We will see the reasons for each of these

intentional parameter variations in the following sections.

4.2 A classification of systematic error mechanisms

In this section, we will step back and consider an abstract description of our experiment to

see that there are two distinct classes of systematic errors that can arise.

Let the position-dependent detection efficiency be ǫ(~x), where ~x is the position of a

molecule when it is probed, the population density of the molecules that radiate photons in

the probe region be ρ(~x), and the average accumulated phase for a molecule that is detected

at position ~x be φ(~x). The average measured phase in a particular state is then

φ̄ =

∫

dV ǫ(~x)ρ(~x)φ(~x)
∫

dV ǫ(~x)ρ(~x)
, (4.2)

where the integral runs over the entire detection volume V . In the ideal case that the phase is

independent of position, φ 6= φ(~x), we recover the simple result φ̄ = φ. Alternatively, in the

ideal case that the detected population density is constant in some finite occupied volume

V and zero elsewhere, ρǫ 6= ρ(~x)ǫ(~x), we also recover the intuitive result φ̄ =
∫

dV φ(~x)/V .

Any parity sums of state-by-state measured phases will thus behave well in these two cases.

For the nearly-general case, suppose only that ǫ(~x) = ǫnr(~x), so that the detection

efficiency of a photon emitted at position ~x is independent of the experimental state1. For

1. This assumption breaks down badly when the P̃ switch is included because the spatial distribution of
emitted photons is P̃-dependent, but this caveat isn’t essential to the main point of this discussion.
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simplicity, I’ll only explicitly include the non-reversing and Ñ Ẽ-odd components of any

quantities here, and I will keep position-dependence of ρ, ǫ, and φ implicit. The measured

phase in some state of the experiment is then computed as

φ̄ =

∫

dV ǫ
[

ρnrφnr + Ñ ẼρnrφÑ Ẽ + Ñ ẼρÑ Ẽφnr + ρÑ ẼφÑ Ẽ
]

∫

dV ǫ
[

ρnr + Ñ ẼρÑ Ẽ
] . (4.3)

We define Nx ≡ ∫

dV ǫρx, where here x = nr or Ñ Ẽ , and Taylor expand the denominator

to second order in nÑ Ẽ ≡ NÑ Ẽ

Nnr . Looking forward, I’ll also define ρÑ Ẽ = nÑ Ẽρnr + δρÑ Ẽ so

that by definition
∫

dV ǫδρÑ Ẽ = 0. Further, let φx = φx0 + δφx such that
∫

dV ǫρnrδφx = 0.

We therefore interpret δρÑ Ẽ as the correlated shape of the population distribution, nÑ Ẽ

as the state-correlated relative population distribution amplitude, and δφx as the position-

dependent part of the (possibly state-dependent) phase. After some algebra, we find to

second order in small quantities δφx, δρx, and nÑ Ẽ that

φ̄Ñ Ẽ =

∫

dV ǫ(ρnrφÑ Ẽ
0 + δρÑ Ẽδφnr)

Nnr
. (4.4)

The first term,
∫

dV ǫρnrφÑ Ẽ
0 /Nnr, gives the overall Ñ Ẽ-correlated phase averaged over

the molecular population. This term contains both the EDM-dependent phase and a large

class of systematic errors. I refer to systematic errors arising in this way as Class I systematic

errors.

The second term,
∫

dV ǫδρÑ Ẽδφnr/Nnr, describes a distinct class of systematics, in

which a position-dependent correlated population distribution δρÑ Ẽ couples to a position-

dependent uncorrelated phase δφnr. I refer to systematic errors arising in this way as Class

II systematic errors.

We see that any possible correlation in the population distribution amplitude, nÑ Ẽ , has

no effect on the measured phase due to our normalization scheme. Terms with only one of

δρÑ Ẽ or δφx integrate to 0 by construction. Of course, we have defined our distributions so

there is no δρnr to couple to δφÑ Ẽ .
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4.2.1 Magnetic field gradients to probe Class II systematic errors

Applied magnetic fields that do not reverse with any switches can impart very large non-

reversing phases φnr, making magnetic field gradients (e.g., ∂Bz
∂z ) a powerful way to probe the

second class of systematic errors: any spatial dependence of the population distribution that

is correlated with the Ñ Ẽ switches will couple to the artificially large spatially-dependent

phase δφnr to produce a systematic shift φ̄Ñ Ẽ . Thus any systematic of the second class

will be observable with a large enough applied magnetic field gradient. To make this more

concrete, suppose we apply a constant magnetic field gradient such as B = B0 + ∂B
∂z z. Then

the accumulated phase, as a function of position in the readout beam, will be approximately

φ(z) = −gµBτ(B0 + ∂B
∂z z) = φ0 + δφ(z), with δφ(z) = ∂φ

∂z z. Then the contribution from

the Class II systematic error is φ̄Ñ Ẽ = ∂φ
∂z

∫

dV ǫδρÑ Ẽz/Nnr. We can compute an EDM-

correlated center of mass, zÑ Ẽ
CM = [

∫

dV ǫρz/
∫

dV ǫρ]Ñ Ẽ =
∫

dV ǫδρÑ Ẽz/Nnr, so we can

express the systematic phase shift as φ̄Ñ Ẽ = ∂φ
∂z z

Ñ Ẽ
CM. If instead a linear gradient is applied

along the y-direction, then φ̄Ñ Ẽ = ∂φ
∂y y

Ñ Ẽ
CM. Thus we can interpret a Class II systematic er-

ror, in the special case of a constant phase gradient, as the product of a non-reversing phase

gradient and an Ñ Ẽ-correlated movement of the center of mass of the detected molecular

population. Note that in a full treatment, we could also have terms with other switch behav-

ior, e.g., φ̄Ñ Ẽ = (∂φ∂z )B̃zÑ ẼB̃
CM , etc., although we have seen no evidence of such contributions

in ACME II.

We can monitor δρÑ Ẽ indirectly by analyzing the fluorescence collected in each of the 8

PMTs. For example, we can compute a total fluorescence signal F from PMTs positioned

along +z and compare to the total fluorescence signal from PMTs positioned along −z.

This can be useful because the PMTs along +ẑ preferentially detect photons from molecules

along +ẑ, and likewise for −ẑ. We denote half the difference between these signals by F z̃,

consistent with our usual parity sum notation. Further, we can examine the dependence

of F z̃ on the experimental state to see whether the center of mass of the molecules shifts

under different experimental conditions. In the parity sum notation, we consider whether

or not F z̃ Ñ Ẽ = 0. Under conditions where Class II systematic errors are significant, we do

see that F z̃ Ñ Ẽ 6= 0, providing strong evidence of an Ñ Ẽ-correlated shift in the molecular
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center of mass that is probed.

No systematic errors from this second class, involving spatially-dependent correlated

populations combined with spatially-dependent uncorrelated phases, were observed in ACME

I.

4.3 A perturbative model of Class I systematic errors

We will spend a while longer considering systematic errors in the abstract before describing

specific systematic errors observed in ACME II. In particular, we will consider a fairly

general framework of time-dependent perturbation theory describing the evolution of the

molecular state. I’ve found this perspective useful in checking systematic error models; for

example, see Appendix D for order-of-magnitude estimates of various AC Stark and AC

Zeeman effects using the framework developed in this section.

Time-dependent perturbation theory

First, let’s review time-dependent perturbation theory. Let a time-dependent Hamiltonian

be given by H = H0 +V (t), where the eigenstates and eigenvalues of H0 are known. Denote

the eigenstates by |n〉 and their eigenvalues by En. In the absence of a perturbation, V (t) =

0, we know that |ψ(t)〉 =
∑

n cne
−iEnt|n〉, where the values of cn are specified by the initial

condition. When V (t) 6= 0, the coefficients are perturbed, cn → cn(t). Time-dependent

perturbation theory is typically formulated for the special case in which some ci(t = 0) = 1

and cn 6=i(t = 0) = 0. Unlike in standard time-independent perturbation theory, where the

perturbed eigenstates and eigenvalues are computed (with no reference to initial conditions),

in this section we will directly compute the time-evolution of a specific initial state given the

perturbing Hamiltonian. To make this explicit, I write |ψi(t)〉 =
∑

n cni(t)e
−iEnt|n〉, where

the i subscript refers to the initial state. Because the time-evolution operator is linear in

state vectors, a state that is not initially in an eigenstate of the unperturbed Hamiltonian,

|ψ(t = 0)〉 =
∑

iCi|i〉, can simply be written |ψ(t)〉 =
∑

i Ci
∑

n cni(t)e
−iEnt|n〉.

The standard results of time-dependent perturbation theory, up to second order in V (t),

are [25, Sec. 5.6]:
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c
(0)
ni (t) = δni

c
(1)
ni (t) = −i ∫ t0 dt′Vni(t′)eiωnit′

c
(2)
ni (t) = −∑k 6=i

∫ t
0 dt

′′Vnk(t′′)eiωnkt
′′ ∫ t′′

0 dt′Vki(t′)eiωkit
′
,

(4.5)

where ωnm = En−Em. These results implicitly assume that V (t) is entirely off-diagonal. It

is not particularly difficult to show that in the general case, the diagonal perturbations mod-

ify these results by everywhere substituting Ent → Ent+
∫ t

0 dt
′Vnn(t′). In the specific cases

I have examined, any diagonal perturbations correct the standard results only at a higher

order suppressed by ∼ |V |
∆ , where |V | denotes a characteristic perturbation energy and ∆

is a characteristic energy splitting. Therefore, I neglect any diagonal time-dependent per-

turbations. Of course, a time-independent diagonal perturbation can be trivially absorbed

into H0.

Note that in many previous treatments of systematic errors in ACME (e.g., throughout

[144]), the first-order corrections to eigenstates are computed, followed by the associated

energy shifts that appear at second order in the perturbing Hamiltonian. This is ultimately

equivalent to computing coefficients c(2)
nn(t) via time-dependent perturbation theory, but

omits the second-order interactions between M = ±1 levels in our measurement, cM(−M)(t).

As we will see, this omission is more or less justified.

Evolved state with time-independent perturbation

We can gain some insight by using the formalism of time-dependent perturbation theory

for a time-independent perturbation V 6= V (t). As stated previously, any time-independent

diagonal perturbation can be absorbed into H0, so I assume that Vmm = 0 for all m. I

further assume that all “single-step” detunings ωnm are large compared to the characteristic

measurement frequency 1/t. Note, however, that “two-step” detunings ωnm − ωmi = ωni

might be still small (e.g., the splitting between M = ±1 states). Direct calculation yields

corrections to the initial state amplitude,
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c
(1)
ni (t) = Vni

ωni

c
(2)
ii (t) =

∑

m i
|Vmi|2
ωmi

t

c
(2)
ni (t) =

∑

m
VnmVmi
ωmi

t
(

exp(iωnit)−1
ωnit

+ 1
ωnmt

)

.

(4.6)

The first-order perturbation, aside from very rapidly oscillating transients ∼ exp(iωnit)

that I have neglected here, saturates to have amplitude ∼ |V |/∆. The second-order pertur-

bation behaves rather differently depending on whether we consider the perturbed ampli-

tude of the initial eigenstate, c(2)
ii , or the mixture of some new eigenstate of the unperturbed

Hamiltonian, c(2)
ni . Note that c(2)

ii (t), to leading order, can be interpreted as the phase ac-

cumulated due to a perturbed energy, cii ≈ 1 + i
(

∑

m
|Vmi|2
ωmi

)

t ≈ exp
[

i
(

∑

m
|Vmi|2
ωmi

)

t
]

≡

exp
[

i
(

∑

mE
(1)
mi

)

t
]

. This is the second-order perturbation that has typically been consid-

ered in previous treatments of systematic errors (e.g., Amar Vutha’s exploration of geometric

phases [144, Sec. B] and Brendon O’Leary’s estimates of AC Stark/Zeeman shifts [149, Sec.

4.4.2]).

However, terms of the form c
(2)
ni (t) may be non-negligible in the case that the states

|i〉 and |n〉 under consideration are near-degenerate, and in particular when ωni ∼ t−1 or

smaller. (The second term is of order |V |2
∆2 and will typically be negligible for realistic

perturbations relevant to the ACME measurement.) In the ωni ≪ t−1 ≪ ωnm limit, we

have c(2)
ni → ∑

m i
VnmVmi
ωmi

t, similar in form to c(2)
ii (t). In the regime t−1 ≪ ωni ≪ ωnm, we

have c(2)
ni → −

(

1
ωnit

)

×∑m i
VnmVmi
ωmi

t, so that the scale of the perturbation is suppressed by

ωnit ≫ 1. The effect these perturbations have on our phase measurement is clarified in the

next section.

Effect of perturbed states on the phase measurement

We will simplify the notation of our phase measurement somewhat from that used in Ch.

2. For an ideal measurement, let us nominally prepare the state

|ψ(t = 0)〉 =
1√
2

(|M = +1〉 + |M = −1〉) (4.7)
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in the |H,J = 1〉 manifold and measure the state after a time t such that the state is

|ψ(t)〉 =
1√
2

(e−i(π/4+φ)|M = +1〉 + e+i(π/4+φ)|M = −1〉), (4.8)

where typically φ ≪ 1. We alternately project into states |X〉(|Y 〉) ≡ 1√
2
(|M = +1〉±|M =

−1〉) and observe the projected numbers SX ≡ |〈X|ψ(t)〉|2, and likewise for SY . We then

compute the asymmetry A = SX−SY
SX+SY

and normalize by the contrast to obtain A
2C = φmeas..

Note that we are neglecting the complications arising from the possibility of changing the

relative preparation and readout basis, or projecting through either P̃ state. However, none

of our conclusions depend on these details.

Due to a perturbation over the evolution of the state, let

|M = ±1〉 → [(1 + ǫ±) + ib±]|M = ±1〉 + (c± + id±)|M = ∓1〉. (4.9)

This perturbation describes any possible mixing of the M = ±1 states, or shifts in energy

to one or the other state individually. Further, suppose that we initially prepare a small

population imbalance so that

|ψ(t = 0)〉 =
1√
2

[(1 − µ)|M = +1〉 + (1 + µ)|M = −1〉]. (4.10)

This occurs, for example, if the preparation laser has non-zero ellipticity, a possibility we

neglected for the sake of clarity in Ch. 2. We can then find the measured phase φmeas.

(asymmetry normalized by 2C) by some straightforward algebra. If ǫ±, b±, c±, and d±

are second-order small, while φ and µ are first-order small, then at third order in small

quantities,

φmeas. = φ− b+ − b−
2

− c+ + c−
2

− (d+ − d−)φ− 2

3
φ3 + (c+ − c−)µ− 2φµ2. (4.11)

Ideally, φmeas. = φ, but in the presence of perturbations or imperfections, this will

not necessary hold true. Because of our normalization procedure, any perturbation to the
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real component of a state, ǫ±, drops out of the phase measurement. The terms involving

b± give the differential phase picked up due to M -dependent energy shifts. The terms

involving c± give the M -independent real mixing between M states; we will consider this

term at some length shortly. Further terms involve imperfections in the state preparation.

Those involving φ can be relatively easily distinguished by, for example, taking data with

different applied magnetic field amplitudes, for which the induced phase precession φ will

vary significantly. The term (c+ − c−)µ couples the M -dependent real mixing between M

states to an initial population imbalance, which could arise (for example) from ellipticity

in the preparation laser and would therefore be modulated experimentally by varying the

preparation laser ellipticity.

Let’s return to the third term, (c+ + c−)/2. This term involves second-order mixing

coefficients between M states, which are contained in the state coefficient c(2)
M(−M). As a

concrete example, consider a constant perturbation and suppose we can neglect the terms

that are necessarily of order |V |2
∆2 . Then c± will include contributions proportional to

Im[VMkVk(−M)] Im[exp(iMµHBt) − 1]/(MµHBt), (4.12)

and

Re[VMkVk(−M)] Re[exp(iMµHBt) − 1]/(MµHBt), (4.13)

where k labels some intermediate state and the splitting between ±M is known to be

dominated by the Zeeman interaction. The script symbols Im and Re denote “the imaginary

part of” and “the real part of.”

The expansion of [exp(iMµHBt) − 1]/(MµHBt) has only imaginary M -even terms and

real M -odd terms, so the real contribution to c
(2)
M(−M) in this case arises only from the

imaginary and M -even part of VMkVk(−M) = VMkV
∗

(−M)k, or the real and M -odd part of

the same quantity. Assuming a general form VMk = α+ iβ +Mγ + iMδ, it turns out that

the real part of VMkV
∗

(−M)k is entirely M -even and the imaginary part is entirely M -odd.

Therefore, the term (c+ + c−)/2 in the measured phase vanishes for a static perturbation

(provided, again, that we can ignore the term of order |V |2
∆2 ). I suspect, but have not
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proved in generality, that this reasoning applies to a generic time-dependent perturbation

as well–i.e., the term (c+ + c−)/2 is at most of order |V |2
∆2 . If we accept the conjecture

that this is generally true (and not just in the specific cases I’ve examined), and that the

terms proportional to φ and µ are relatively easily identified by their explicit dependences

on lab parameters like the magnetic field magnitude or preparation laser ellipticity, the

perturbations c(2)
M(−M) can indeed be ignored. Under these conditions, we can justify the

approach seen in [144, 149] of only considering the phase accumulated due to perturbed

energies in M = ±1 separately rather than also computing second-order couplings between

M = ±1.

4.4 Enr and correlations with Ñ Ẽ

In order to generate a systematic error, some mechanism must correlate measured phases

with the experimental switches Ñ and Ẽ . It is comparatively easy to find a model where

ωÑ 6= 0 or ωẼ 6= 0, but the fact that a systematic must be odd under either switch

independently makes our system relatively robust. However, there is one way in which

Ñ Ẽ-correlated effects can easily enter into our measurement procedure: a non-reversing

component of the applied electric field, Enr. In particular, DEnr = ∆Ñ Ẽ , where ∆ is the

detuning of the preparation or probe laser and D is the dipole moment in the H(J = 1)

state. Following our usual parity sum notation, Enr is defined here by the applied electric

field in any given experimental state, ~E · ẑ(Ẽ) = EẼ + Enr, where I am ignoring switches

other than Ẽ and for the sake of simpler notation we always write E instead of E Ẽ .

To see this, consider Fig. 4.2 and note that changing either Ñ or Ẽ reverses the sign of

the laser detuning from the H → I transition used for both state preparation and readout.

Thus the laser detuning is correlated with the EDM switches, ∆ = ∆nr + Ñ Ẽ ∆Ñ Ẽ + · · · ,

where in general there are additional (but typically less dangerous) non-zero terms such as

∆Ñ and ∆P̃ .

Once this EDM-switch correlation has been introduced, there are two generic ways that
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it can result in a systematic. Let’s refer back to Eq. 4.4:

φ̄Ñ Ẽ =

∫

dV ǫ(ρnrφÑ Ẽ
0 + δρÑ Ẽδφnr)

Nnr
. (4.14)

The first situation in which a systematic can occur is that the overall measured molecular

phase may depend on laser detunings, dφÑ Ẽ
0 = ∂φ0

∂∆ ∆Ñ Ẽ . For the most part, ACME I

systematic errors arose in this way. The second situation is somewhat more complicated

to understand and requires three ingredients in the context of an Enr-related effect. (1)

The phase of the molecules must have a spatial dependence, δφnr 6= 0. For example, in the

presence of a constant ambient magnetic field gradient dB
dz , the spatially-dependent part of

the non-reversing phase is δφnr = −gµB dB
dz zτ . (2) There must be a non-reversing electric

field gradient that generates a spatially-dependent correlated detuning. We will write the

spatially-dependent part of the correlated detuning as δ∆Ñ Ẽ , in analogy to the way in which

δρÑ Ẽ and δφÑ Ẽ are defined. For example, if there is a constant non-reversing electric field

gradient dEnr

dz , then δ∆Ñ Ẽ = D dEnr

dz z. (3) Finally, the molecular population density that

is either prepared or probed must depend on laser detunings, δρÑ Ẽ = ∂ρ
∂∆δ∆

Ñ Ẽ . These

three conditions together are sufficient to generate a non-zero contribution to the overall

measured phase φ̄Ñ Ẽ in Eq. 4.4.

In ACME II, we have systematic errors corresponding to both of these kinds of situation.

In the following sections, I will first review all of the systematic errors first seen in ACME I

that are still relevant to ACME II, and then I will describe systematic errors that are new

to the ACME II measurement.

4.5 Review of AC Stark shift systematics

In ACME I, the leading systematic arose from AC Stark shifts coupled to non-reversing

electric fields [128]. See [129, 149] for detailed elaboration. Here, I will briefly review

the model of how AC Stark shifts in the preparation laser beams can produce an EDM

systematic error proportional to Enr.

We prepare and read out the spin projection of molecules in the H state by optical
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Figure 4.2: (a) Energy levels in Ẽ = +1 state. With Enr > 0, the Ñ = −1 state is blue-
detuned, while the Ñ = +1 state is red-detuned. (b) Energy levels in Ẽ = −1 state. With
Enr > 0, the Ñ = −1 state is red-detuned, while the Ñ = +1 state is blue-detuned. Thus
changing either Ñ or Ẽ reverses the detuning, ∆ = Ñ Ẽ DEnr, where D is the dipole moment
in H(J = 1).

pumping. In the tails of the laser beams, the Rabi frequency might be low enough that

molecules are not optically pumped, but large enough to induce AC Stark shifts that effec-

tively perturb the spin orientation of the molecules after preparation or before readout.

Instead of the basis |H,J = 1,M = ±1〉 and |I, J = 1,M = 0〉, it is convenient to

work in the dressed-state basis {|D〉, |B−〉, |B+〉}, where |D〉 is the “dark” state (some

superposition of M = ±1 in the H state), |B+〉 is the higher-energy bright state, and |B−〉

is the lower-energy bright state. If the Rabi frequency of the excitation light is Ω and the

detuning is ∆, then the dressed-state basis Hamiltonian in the presence of the laser beams

is [129, Eq. 65]

H̃ =















0 −iχ̇∗κ+ −iχ̇∗κ−

iχ̇κ+ EB− − i
2

Ω̇∆−Ω∆̇
∆2+Ω2

iχ̇κ− i
2

Ω̇∆−Ω∆̇
∆2+Ω2 EB+















, (4.15)

where κ2
± = 1

2

(

1 ± ∆√
∆2+Ω2

)

and EB± = 1
2

(

∆ ±
√

∆2 + Ω2
)

. The significance of χ̇ will

be explained shortly. In general, ∆ = ∆det. − iγ/2 is actually a complex “detuning” that

incorporates the effect of the decay rate γ of the excited state B+, as well as the physical

detuning ∆det.. Beware that including this complex decay rate causes the Hamiltonian H̃

to be non-Hermitian, so that EB± are complex and the population within the three-level
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system is not conserved (as should indeed be the case for a system with decays to other

states). Furthermore, we cannot have ∆ = 0 even when the resonance condition ∆det. = 0

is satisfied.

The factor χ̇ characterizes (typically small) changes to the polarization of the excitation

light. If we parametrize the polarization as [129, Eq. 14]

ǫ̂ = −e−iθ cos Θǫ̂+1 + e+iθ sin Θǫ̂−1, (4.16)

then χ̇ = Θ̇ − i(θ̇ − gµBBB̃), where the Zeeman precession rate has the same effect as

a constant linear polarization gradient in the tails of the preparation and readout beams

because it induces precession of the molecular angular momentum alignment with respect

to the laser polarization.

Let us first consider an unrealistically simple case, in which both the Rabi frequency

and detuning are constant in the tails of the laser beams. Then the effect of the AC Stark

shift is equivalent to perturbing the polarization defining the prepared state according to

ǫ̂′ = ǫ̂+ dχΠiẑ × ǫ̂∗, (4.17)

where Π =
∑

± κ
2
∓e

−iEB±t
∫ t

0 dt
′ χ̇(t′)
dχ eiEB±t

′
and dχ = dΘ − i(dθ− gµBBB̃t). In terms of the

parametrization in Eq. 4.16, the effective change in the laser polarization due to the actual

change in polarization and the dynamical evolution of the molecular state is

dθeff = −dΘImΠ + (dθ − gµBBB̃t)ReΠ

dΘeff = −dΘReΠ − (dθ − gµBBB̃t)ImΠ.

(4.18)

The simplest case occurs if χ̇ = dχ/t is constant during the optical pumping in the tails,

so that

Π =
∑

±
κ2

∓e
−iEB±t/2sinc(EB±t/2). (4.19)

The effective polarization errors in Eq. 4.18 modify the measured phase φ according to
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[129, Eq. 41]

φ → φ+ dθref − 1

2
(dθX + dθY ) − P̃prepP̃readdΘref(dΘX − dΘY ) + O(dǫ)3. (4.20)

In the present discussion, we will be concerned with the second term, dθref , an effective

change in the linear polarization angle occuring in the refinement beam due to an AC Stark

shift in the “falling tail” of the laser. From Eq. 4.18, we see that this can arise from a change

in laser ellipticity, dΘ, across the tail of the laser beam. In particular, we are concerned with

the effect of ∆Ñ Ẽ on the measured EDM-correlated frequency, ωÑ Ẽ , so we Taylor expand

Eq. 4.18 in ∆det. and divide by the precession time:

dωÑ Ẽ
Enr = −1

τ
dΘ

∂ImΠ

∂∆det.
∆Ñ Ẽ . (4.21)

4.5.1 Polarization gradients

In the apparatus, the mounting of both the vacuum windows and the electric field plates

results in non-uniform stress-induced birefringence. The combined effect of the window and

first field plate that the laser passes through (i.e., before it interacts with the molecules)

is equivalent to a single birefringent element with an effective fast axis and birefringence.

There is no reason that this effective fast axis will be exactly perpendicular or parallel to the

laser polarization axis, so the laser is imprinted with a polarization ellipticity as it passes

through the birefringent material. Furthermore, and more problematically, the imprinted

birefringence is non-uniform across the laser beam due to the stress gradients across the

vacuum windows and field plates.

We have precisely measured the polarization of our lasers after passing through both vac-

uum windows and field plates, in an effort led by Vitaly Andreev [150, 198]. We found that

the birefringence axis is aligned with the optical table to within ≈ 5◦. This near-alignment

is fortuitous since the imprinted ellipticity on the laser beam scales with the misalignment

of the laser polarization (nominally x̂ for the refinement beam) and the birefringence axis.

However, this is not particularly surprising since the vacuum windows and field plates are
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both rectangular, with symmetry axes along x̂ and ŷ.

For a small misalignment angle β between the laser polarization and birefringence axis,

and small effective retardance δ, the ellipticity is found2 by Θ − π
4 = −βδ. Thus, at leading

order, dΘ = −dβ δ − β dδ, where dβ and dδ are small changes in the birefringence axis and

retardance across the laser beam, respectively.

Vitaly Andreev has carefully measured ellipticity gradients and found that, under normal

conditions, dΘ
dx < 10−3/mm when the laser passes through both windows and both fields

plates. Unfortunately, direct polarimetry of the laser light in between the field plates is not

possible under realistic experimental conditions (e.g., under vacuum). If we suppose, for

point of argument, that the region of the laser beam where the AC Stark shift occurs is ∼1

mm, then we can expect dΘ ∼ 10−3.3

4.5.2 Behavior of Im[Π(∆det)] and quantitative estimate

It may seem intuitive that physical quantities should be at most quadratic in ∆det on

resonance, ∆det = 0, so that in an ideal measurement where ∆det = 0, the factor ∂Im[Π]
∂∆det

would vanish. In fact, precisely the opposite is true; the imaginary part of Π is completely

odd in the detuning, and |∂Im[Π]
∂∆det

| > 0 even on resonance.

To see this, let’s take χ̇ = Θ̇ since we are only concerned with ellipticity gradients

here. Then χ̇ and dχ are real, while a bit of algebra shows that κ2
±(−∆det, γ,Ω) =

[κ2
∓(+∆det, γ,Ω)]∗ and, likewise, EB±(−∆det, γ,Ω) = E∗

B∓(+∆det, γ,Ω). It follows (due

to the sum over ± in the definition of Π) that Π(−∆det, γ,Ω) = Π∗(+∆det, γ,Ω). Let us

now decompose Π = Π∆det
+ Π0 into a part that is an odd function of detuning and a part

that is an even function of detuning. Then we can find that Im[Π] = 1
2i (Π−Π∗) = Π∆det

and

Re[Π] = 1
2(Π + Π∗) = Π0. Thus, in the case that χ̇ = Θ̇ is real, the imaginary component of

Π is an odd function of detuning and the real component is an even function of detuning.

2. See [150, Eq. 4.2] for the formalism. The conversion from the normalized Stokes parameter S/I to our
ellipticity parameter is Θ = π

4
− 1

2
S
I

.

3. Parameters of the AC Stark shift model can’t be matched to the experimental conditions to better
than a factor of a few since the exact molecular dynamics in the tails of the laser beams are not perfectly
understood. In this instance, the relevant length scale is not rigorously defined, so we can only indicate the
expected order of magnitude for dΘ.
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Imperfection Corresponding quantity Typical value Uncertainty

Enr ∆Ñ Ẽ −2.6 mV/cm 1.6 mV/cm
dΘ Optics birefringence ∼ 10−3 —

Quantity Value Uncertainty Units

∂ωÑ Ẽ/∂Enr 21 52 (µrad/sec)/(mV/cm)

dωÑ Ẽ
Enr −56 140 µrad/sec

Table 4.2: Summary of Enr systematic parameters and shift. The experimental imperfection
Enr leads to a correlated detuning, ∆Ñ Ẽ = DEnr. Together with a change in the laser
ellipticity in the refinement region, dΘ, due to a birefringence gradient, dΘ

dx , the correlated

detuning can lead to a systematic slope, dωÑ Ẽ/dEnr. We compute the systematic slope by
comparing ωÑ Ẽ in the presence of a deliberately applied large value of Enr = 150 − 300
mV/cm, and the value of ωÑ Ẽ under ideal conditions. We then compute a systematic shift,

dωÑ Ẽ
Enr = dωÑ Ẽ

dEnr Enr, using the measured systematic slope (consistent with zero) and a typical
value of Enr obtained via microwave spectroscopy (see Sec. 5.1).

This shows us that, whatever the exact functional form of Π is, we cannot null out the AC

Stark shift systematic by tuning the lasers to resonance since even then, ∂Im[Π]
∂∆det

6= 0.

Approximate analytic results are obtained in [149, Sec. 4.3.2] for Im[Π(∆, γ,Ω)], for

several specific models of the time-dependent Rabi frequency in the falling tail of the laser

beam. However, these models should not be expected to match our system perfectly, and

we resort instead to the experimental data. In ACME I, ellipticity gradients on the order

of ∼ 10−2/mm led, via the AC Stark shift mechanism, to a systematic error effect (after

suppression of the initial systematic) of up to dωÑ Ẽ ∼ 1
τ 10−6 rad

2π×10 kHz∆Ñ Ẽ [129, Sec. 5.2.5].

As we will see in Sec. 5.1, non-reversing electric fields contribute ∆Ñ Ẽ on the order of several

kHz, so with τ ∼ 1 ms and dΘ < 10−3, we could expect dωÑ Ẽ
Enr < 100µrad/sec, which is only

smaller than the ACME II sensitivity by a factor of order unity.

4.5.3 Measured Enr systematic

To test the contribution of the AC Stark shift systematic seen from ACME I, we deliberately

apply a large non-reversing component of the electric field, Enr = 150 − 300 mV/cm, and

monitor dωÑ Ẽ

dEnr throughout the EDM data set (typically one superblock measured per day

with a deliberately large value of Enr, and ∼ 20 total superblocks per day under ideal

conditions). We observed dωÑ Ẽ

dEnr = 21(52) µrad
sec /(mV/cm), where the quantity in parentheses
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is a 1σ statistical uncertainty4. The average non-reversing electric field in the preparation

and probe region, where Enr can generate ∆Ñ Ẽ and is therefore liable to produce a systematic

shift in ωÑ Ẽ , is Enr = −2.6(16) mV/cm as described in Sec. 5.1. We therefore infer a

systematic shift due to Enr of dωÑ Ẽ
Enr = dωÑ Ẽ

dEnr Enr = −56(140)µrad/sec, consistent with zero.

For a summary of parameters related to the Enr systematic, see Table 4.2.

During the acquisition of the final dataset, we took four runs (∼days) of data with all

refinement and probe laser optics on the west, rather than east, side of the interaction region,

and the lasers propagating along −ẑ instead of along +ẑ as in the ordinary configuration of

the apparatus. We distinguish between these configurations by k̂ · ẑ = ±1, where k̂ denotes

the wavevector of preparation and probe beams. At the sensitivity of these four runs with

k̂ · ẑ = −1, all measured precession frequencies were consistent with those obtained for

k̂ · ẑ = +1. However, we observed a systematic slope of dωÑ Ẽ

dEnr ≈ 700 µrad
sec /(mV/cm), which

would result in an EDM shift of ∼ 3 mrad/sec, significantly larger than the statistical

sensitivity of the EDM measurement. If this systematic shift were measured sufficiently

precisely, then it could be subtracted from ωÑ Ẽ = ωÑ Ẽ
T + dωÑ Ẽ + · · · in order to obtain the

contribution to the EDM channel from T -violating physics alone, ωÑ Ẽ
T . However, because

the systematic slope is larger in the k̂ · ẑ configuration, the statistical uncertainty in dωÑ Ẽ
Enr

would exceed the statistical uncertainty of ωÑ Ẽ for data taken under ideal conditions (373

µrad/sec). As a result, the uncertainty in the systematic error contribution due to data

taken with k̂ · ẑ = −1 would dominate the overall error budget of the measurement. The

observed increase in the Enr systematic error is consistent with the fact that the effective

ellipticity of the laser while interacting with the molecules is determined only by the first

window and field plate that it passes through. If the birefringence axis is less well-aligned

with x̂, or if the retardance is larger, on one side of the vacuum chamber than the other,

then the systematic slope dωÑ Ẽ

dEnr will be proportionally larger for the corresponding k̂ · ẑ

configuration.

In ACME I, the Enr systematic error was suppressed in part by aligning the refinement

4. I always give systematic error slopes, shifts, and uncertainties from the average over all four analysis
routines, which can disagree by ∼ ±10%, depending on our various choices of analysis parameters. We have
verified that under the same conditions, we obtain the same results to extremely high precision.
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laser polarization along the combined birefringence axis of the field plates and vacuum

windows. In ACME II, adjusting the refinement laser away from the molecular angular

momentum axis prepared by the STIRAP beams (which cannot be adjusted) necessarily

incurs a loss in signal. However, the larger problem with suppressing the Enr systematic in

the k̂ · ẑ = −1 configuration is that the refinement laser polarization must align with the

STIRAP-prepared angular momentum alignment in order to suppress the “P Ñ Ẽ” systematic

error. This is discussed in Sec. 4.7. Thus, it is not practical to suppress the Enr systematic

further for the k̂ · ẑ = −1 configuration.

For these reasons, we only include in the calculation of the EDM value data taken with

k̂ · ẑ = +1, where the Enr systematic slope is sufficiently small that the overall uncertainty

in the systematic error contribution is small compared to the statistical sensitivity of the

EDM measurement.

4.6 Systematic errors in the STIRAP lasers

4.6.1 Stark interference

In this section we will consider a separate systematic that arises from molecular dynamics

in the presence of laser light. Up to now, we have assumed that all laser transitions involve

the dominant E1 matrix element. However, in fact all multipole transition matrix elements

E1, M1, E2 . . . will act to drive molecules between the addressed states. Under certain

conditions, these various matrix element amplitudes can interfere with each other. Here, I

will consider only the E1 and M1 transition amplitudes, which are dominant. The calcu-

lations are fairly involved; see [129, 149] for details. I will merely summarize the concepts

here.

For a classical light field, the corresponding operators on the molecular states take the

form

OE1 = ǫ̂ ·∑i ~ri

OM1 = (k̂ × ǫ̂) ·∑i
1

2mi
(gL~Li + gS ~Si),

(4.22)
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where the sums run over all charged particles in the system and mi is a mass. Note that for

both operators, we have a lab-frame vector (ǫ̂ or k̂ × ǫ̂) and a molecule-frame vector (~r or

gL~L+ gS ~S). By using the usual transformations between different frames, it is possible to

compute the transition probability between an initial and final state, |〈ψf |OE1 +OM1|ψi〉|2.

This transition probability contains “Stark interference” terms 〈ψf |OE1O
∗
M1|ψi〉 + c.c. that

are only first-order in the relative strength of E1 and M1 matrix elements, cM1
cE1

. (See [149,

Sec. 4.2] for rigorous definitions). We find it convenient to treat this interference as a

perturbation to the effective E1 polarization:

~ǫeff = ǫ̂− cM1

cE1
i n̂ × (k̂ × ǫ̂). (4.23)

The symmetries of the E1 and M1 operators are expected to require cM1
cE1

to be entirely

real. The factor n̂ = Ñ Ẽ ẑ in the perturbation term ultimately arises from the fact that the

M1 molecular matrix element 〈Λf ,Σf ,Ω|Lmol.
0 |Λi,Σi,Ωi〉 ∝ Ω = MÑ Ẽ , while the analogous

E1 matrix element 〈Λf ,Σf ,Ω|rmol.
0 |Λi,Σi,Ωi〉 is not proportional to Ω.

It turns out that when k̂ · ẑ ≈ ±1, as for the refinement and probe beams, the effective

Ñ Ẽ-correlated perturbation to the linear polarization angle is dθÑ Ẽ
eff = O(θ2

k),where θk is

the angular deviation of the wavevector k̂ from the ẑ-axis. Under ordinary experimental

conditions, therefore, the Stark interference has negligible effect on the refinement and probe

beams. On the other hand, when k̂ = ŷ and ǫ̂ ≈ x̂, as for the STIRAP beams, the effective

Ñ Ẽ-correlated perturbation to the linear polarization angle is dθÑ Ẽ
eff = − cM1

cE1
dΘ, where dΘ

is the average ellipticity parameter of the laser beam. Note that this average laser ellipticity

is of order ∼ 10−2, an order of magnitude larger than the change in ellipticity across the

laser profile that we considered for the AC Stark shift systematics. For cM1
cE1

∼ α ∼ 10−2, we

expect dθÑ Ẽ
eff ∼ 10−4 rad. In the absence of a refinement laser, we would therefore measure

dωÑ Ẽ
ST = 1

τ dθ
Ñ Ẽ
eff ∼ 100 mrad/sec, a rather dramatic factor of ∼ 103 greater than the

statistical sensitivity in the ACME II measurement. As we will see, we observe |dωÑ Ẽ
ST | / 30

mrad/sec, likely smaller than anticipated due to order-of-unity errors in our estimate of

cM1/cE1.
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4.6.2 AC Stark shifts in the STIRAP beams

In addition to the Stark interference effect, there are also AC Stark shift systematics, pro-

portional to Enr, that modulate the phase prepared in the falling tail of the STIRAP laser

beams. Counter-intuitively, we actually expect that the largest polarization gradient in the

STIRAP beams arises from the intrinsic polarization structure of Maxwell-Gaussian laser

beams, due to the tight focus of the beams along x̂ (waist size wx ≈ 150µm). The local

electric field axis (i.e., polarization) in a gaussian beam nominally polarized along x̂ is[149,

Sec. 4.3.3]

ǫ̂ = x̂+

(

λ

2π

)

xy

w2
xw

2
y

ŷ − i

(

λ

2π

)

x

w2
x

(

1 − λz

2πw2
x

)

ẑ + · · · , (4.24)

where wx(y) is the waist size along the x(y)-direction and λ is the wavelength of the laser

light. For the 1090 nm STIRAP beam, the ellipticity gradient is dΘ
dx ∼ 10−2/mm, signifi-

cantly larger than that observed due to stress-induced birefringence in the vacuum windows.

Nevertheless, the systematic error from Stark interference, together with a non-zero ellip-

ticity, dominates the systematic error from AC Stark shifts coupled to Enr and birefringence

gradients.

4.6.3 Residual STIRAP systematics after refinement

In order to suppress the enormous Stark interference systematic arising in the STIRAP

beams, we reproject the molecular state using the refinement beam. In particular, we

optically pump away the bright state of the refinement beam, nominally leaving only the

refinement beam dark state remaining. However, we do not successfully optically pump

100% of the bright-state molecules in the refinement region.

Recall that we can characterize the molecular state in the H(J = 1) manifold by the ori-

entation of its angular momentum alignment in the xy-plane, and that this orientation has

a one-to-one correspondence with the linear polarization of the preparation light. Let the

dark state of the refinement beam have an alignment angle θref and the STIRAP-prepared

state have an alignment angle θST.. Under ordinary conditions, the misalignment angle is

small, dθST ≡ θST − θref ≪ 1 in any particular state of the experiment. Due to the Stark
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interference and AC Stark effects just described, the STIRAP-prepared alignment angle,

dθST = dθnr
ST + Ñ ẼdθÑ Ẽ

ST , has an Ñ Ẽ-correlated component in addition to a non-reversing

offset from, e.g., misalignment of the refinement beam polarization. In the absence of a

refinement beam, the Ñ Ẽ-correlated component of the STIRAP-prepared phase would di-

rectly generate a systematic error, ωÑ Ẽ
ST = dθÑ Ẽ

ST /τ . However, the refinement beam reprojects

the molecular state’s angular momentum alignment along the refinement beam polarization

axis (the dark state of the laser), attenuating any perpendicular (bright state) component

via optical pumping. We define the attenuation factor

Aref. =

(

∂ωÑ Ẽ

∂ωÑ Ẽ
ST

)−1

. (4.25)

Here, ωÑ Ẽ
ST is the measured Ñ Ẽ-correlated frequency with the refinement laser off, and ωÑ Ẽ

is the residual value of the EDM-correlated frequency when the refinement laser is on but

all experimental conditions are otherwise identical. Note that for powerful suppression of

the refinement laser bright state, Aref ≫ 1. In fact, in the following discussion we will be

concerned with the part of ωÑ Ẽ
ST that leaks through to ωÑ Ẽ , rather than the part that is

attenuated, since the STIRAP systematic contribution to the EDM channel is dωÑ Ẽ
ω−ST. =

dωÑ Ẽ

dωÑ Ẽ
ST

∆ωÑ Ẽ
ST , where ∆ωÑ Ẽ

ST is the value of ωÑ Ẽ
ST during ordinary EDM data.

When the 1090 nm laser polarization is misaligned with the vacuum window’s birefrin-

gence axis, the laser is imprinted with a non-zero ellipticity dΘ and ellipticity gradient dΘ
dx .

When we rotate a half-wave plate, which controls the 1090 nm laser’s linear polarization

angle in the xz-plane, by angle dθλ/2, then we therefore observe an enhanced combination

of Stark interference and AC Stark shift systematics, dωÑ Ẽ
ST = −0.319(4) rad

sec dθλ/2. Dur-

ing the EDM data set, approximately once per day, we rotate this half-wave plate by 15◦,

creating ωÑ Ẽ
ST ∼ 5 rad/sec. Under these conditions, we can measure the residual ωÑ Ẽ with

the refinement laser on to infer Aref . In particular, we compute a linear regression of ωÑ Ẽ

for both ordinary data (where ωÑ Ẽ
ST ≈ 0) and this “intentional parameter variation” data

(where ωÑ Ẽ
ST ∼ 5 rad/sec) against ωÑ Ẽ

ST , to compute ∂ωÑ Ẽ/∂ωÑ Ẽ
ST = A−1

ref = −3(37) × 10−5,
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Imperfection Corresponding parameter Typical value Uncertainty

∆ωÑ Ẽ
ST dθλ/2 −1 mrad/sec 15 mrad/sec

Aref < ∞ Pref > 2500 —

Quantity Value Uncertainty Units

∂ωÑ Ẽ/∂ωÑ Ẽ
ST −3 × 10−5 37 × 10−5 —

dωÑ Ẽ
ω−ST −0.1 1.5 µrad/sec

Table 4.3: Summary of ωÑ Ẽ
ST systematic parameters and shift. The imperfection, ∆ωÑ Ẽ

ST , is
a correlated phase (up to a factor of the precession time) prepared by the STIRAP lasers,
which arises from a misalignment of the STIRAP 1090 nm laser polarization with the bire-
fringence axis of the vacuum window. This misalignment is controlled by a half-wave plate
angle, dθλ/2 . Together with a finite refinement laser attenuation factor, Aref = Aref(Pref),
of the unwanted component of the STIRAP-prepared phase, the correlated component of
the STIRAP-prepared phase can lead to a systematic slope, dωÑ Ẽ/dωÑ Ẽ

ST . We compute the
systematic slope by comparing ωÑ Ẽ in the presence of a deliberately applied large value of
ωÑ Ẽ

ST ∼ 5 rad/sec, and the value of ωÑ Ẽ under ideal conditions. We compute a systematic

shift, dωÑ Ẽ
ω−ST = dωÑ Ẽ

dωÑ Ẽ
ST

∆ωÑ Ẽ
ST , using the measured systematic slope (consistent with zero)

and a typical value of ∆ωÑ Ẽ
ST obtained by comparing the value of ωÑ Ẽ with the refinement

laser on vs. off.

consistent with |Aref | > 2500.5

In order to compute a systematic error contribution, dωÑ Ẽ
ω−ST = dωÑ Ẽ

dωÑ Ẽ
ST

∆ωÑ Ẽ
ST , we must

measure the value of ωÑ Ẽ
ST under the conditions of ordinary EDM data. Approximately once

per day, we measure the EDM-channel precession frequency with the refinement laser off,

but otherwise all experimental conditions optimized. We compute ∆ωÑ Ẽ
ST = ωÑ Ẽ

ref off −ωÑ Ẽ
ref.on

to remove the effect of an actual EDM from our calculation of ∆ωÑ Ẽ
ST , where the subscripts

indicate measurements made with the refinement laser off (Aref → 1) and the refinement

laser on (Aref ≫ 1), respectively. We find ∆ωÑ Ẽ
ST = −1(15) mrad/sec. Thus the systematic

error contribution is dωÑ Ẽ
ω−ST = −0.1(15)µrad/sec, consistent with zero and far below the

statistical sensitivity of the EDM measurement. For a summary of parameters related to

the ωÑ Ẽ
ST systematic, see Table 4.3.

Interestingly, the 2σ bound on ∆ωÑ Ẽ
ST is only |∆ωÑ Ẽ

ST | / 30 mrad/sec, a factor of ap-

proximately three below the estimated magnitude of anticipated Stark interference effects.

I expect that the discrepancy arises primarily from the assumption that cM1/cE1 ∼ 10−2.

5. To connect this discussion more directly to the “knob” we turn in the lab, namely dθλ/2, simply use

the chain rule: ∂ωÑẼ

∂ωÑẼ
ST

= ∂ωÑ Ẽ

∂dθλ/2

/
∂ωÑ Ẽ

ST

∂dθλ/2

.
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Without detailed calculations of the matrix elements, cM1 and cE1, we should not expect

our previous estimate to be accurate to better than a factor of order unity.

4.7 Effect of correlated refinement power

In ACME I, there was evidence of an intrinsically Ñ Ẽ-correlated Rabi frequency, ΩÑ Ẽ
r , in

the optical pumping preparation laser (most closely analogous to the refinement laser in the

ACME II experimental scheme). Although the source of this correlated Rabi frequency was

never fully understood, for the moment let us consider one of its effects on our measurement.

Recall from the AC Stark shift model that the effective modification to the refinement laser

polarization due to AC Stark shift effects is dθeff = −dΘIm[Π]+(dθ−gµBBB̃t)Re[Π], where

Π = Π(Ωr,∆) depends on the molecular dynamics in the falling tail of the laser. Here, the

linear polarization gradient in the laser, dθ, and the continuous accumulation of phase from

Zeeman precession, −gµBBB̃t, have exactly analogous contributions to dθeff . In the present

discussion we are interested in the term that appears odd under B̃: dθB̃
eff = −gµBBtRe[Π].

However, recall that Π depends on the Rabi frequency, Ωr. Therefore, if Ωr = Ωnr
r +ΩÑ Ẽ

r Ñ Ẽ ,

then this term contributes an effective phase that is correlated with Ñ ẼB̃:

dθÑ ẼB̃
eff = −gµBBtRe

[

∂Π

∂Ωr

]

ΩÑ Ẽ
r , (4.26)

where we’ve made the reasonable approximation that ΩÑ Ẽ
r /Ωnr

r ≪ 1. The observation of

ωÑ ẼB̃ ∝ B in ACME I was one key piece of evidence in support of a non-zero ΩÑ Ẽ
r .

Because of these observations in ACME I, we considered the possibility of a correlated

Rabi frequency in the refinement beam during ACME II. To test the effect of such a corre-

lated Rabi frequency, we artificially impose a correlated laser power, Pref = P nr
ref +P Ñ Ẽ

ref Ñ Ẽ ,

typically with P Ñ Ẽ
ref /P

nr
ref ≈ 0.1. We initially found a large systematic error slope, ∂ωÑ Ẽ

∂(P Ñ Ẽ
ref

/P nr
ref

)

up to ±10 rad/sec (e.g., ωÑ Ẽ up to ±1 rad/sec with P Ñ Ẽ
ref /P

nr
ref = 0.1). Contrary to the

discussion of Sec. 2.3.5 for an idealized measurement, the systematic slope depends linearly

on a “global” polarization angle, i.e., a common rotation of the refinement polarization θref

and readout polarizations θX(Y ). The reason for this is that the angular momentum align-
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Figure 4.3: P Ñ Ẽ systematic slope, ∂ωÑ Ẽ

∂(P Ñ Ẽ/P nr)
, as a function of the global polarization angle.

The x-axis gives the offset of the preparation and readout half-wave plates in degrees. By
setting ∆θref = 0, the systematic slope can be tuned to zero. Data from Runs 55-56.

ment prepared by the STIRAP lasers, at angle θnr
ST with respect to x̂, cannot be rotated

together with θref and θX(Y ). This fact suggests a form for the systematic error:

dωÑ Ẽ
δP =

∂ω

∂(δPref/Pref)

P Ñ Ẽ
ref

P nr
ref

∆θref , (4.27)

where δPref/Pref denotes a fractional modulation of the refinement laser power and ∆θref ≡

θref − θnr
ST. Note that this systematic error contribution is proportional to both P Ñ Ẽ

ref /P
nr
ref

and to the misalignment between the refinement and STIRAP axes, ∆θref .

We can explain the dependence of dωÑ Ẽ
δP on both the correlated refinement laser power

P Ñ Ẽ
ref /P

nr
ref and polarization misalignment ∆θref as follows. The refinement laser reprojects

the molecular angular momentum alignment from angle θST to φref = θref − ∆θref/Aref ,

where again Aref is the attenuation factor of the refinement laser. Note that as Aref → ∞,

φref → θref . On the other hand, if the refinement laser is off, Aref → 1, then φref → θST.

However, the refinement laser attenuation depends on the refinement laser power, Aref =

Aref(Pref), so

∂φref

∂(δPref/Pref)
=

∆θref

A2
ref

∂Aref

∂(δPref/Pref)
. (4.28)
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Imperfection Corresponding parameter Typical value Uncertainty

P Ñ Ẽ
ref /P

nr
ref ΩÑ Ẽ

r /Ωnr
r −3.1 × 10−3 0.3 × 10−3

∆θref STIRAP/refinement alignment ∼ 0.1◦ —

Quantity Value Uncertainty Units

∂ωÑ Ẽ/∂(P Ñ Ẽ
ref /P

nr
ref) 24 35 mrad/sec

dωÑ Ẽ
δP −74 107 µrad/sec

Table 4.4: Summary of P Ñ Ẽ
ref systematic parameters and shift. The imperfection, P Ñ Ẽ

ref /P
nr
ref ,

is a correlated refinement laser power, or possibly an equivalent correlated refinement laser
Rabi frequency (which might not arise from actual laser power correlations). Together
with misalignment, ∆θref , of the refinement laser polarization relative to the STIRAP-
prepared phase orientation, this correlated laser power can lead to a systematic slope,
∂ωÑ Ẽ/∂(P Ñ Ẽ

ref /P
nr
ref). The systematic slope is minimized by setting ∆θref ≈ 0. We compute

the systematic slope by comparing ωÑ Ẽ in the presence of a deliberately applied large value
of P Ñ Ẽ

ref /P
nr
ref = 0.1, and the value of ωÑ Ẽ under ideal conditions. We compute a bound on the

systematic shift, dωÑ Ẽ
δP = ∂ωÑ Ẽ/∂(P Ñ Ẽ

ref /P
nr
ref) × P Ñ Ẽ

ref /P
nr
ref , using the measured systematic

slope (consistent with zero) and a bound on the typical value of P Ñ Ẽ
ref /P

nr
ref , which is found

as follows. We calibrate the effect of a deliberately applied large value of P Ñ Ẽ
ref /P

nr
ref on ωÑ ẼB̃

in the presence of a large magnetic field, B = 26 mG. We then infer a bound on P Ñ Ẽ
ref /P

Ñ Ẽ
ref

under ideal conditions using the observed value of ωÑ ẼB̃ for all data with B = 26 mG
in the EDM data set and the calibrated slope ∂ωÑ ẼB̃/∂(P Ñ Ẽ

ref /P
Ñ Ẽ
ref ), which arises due to

well-understood AC Stark shift effects.

With dωÑ Ẽ
δP ≡ 1

τ
∂φref

∂(δPref/Pref)

P Ñ Ẽ
ref
P nr

ref
and ∂ω

∂(δPref/Pref) ≡ 1
τ

∂φref
∂(δPref/Pref) , we obtain Eq. 4.27.

In order to minimize the overall contribution from this systematic error, we minimize

∆θref . To do this, we amplify dωÑ Ẽ

d(∆θref) by deliberately applying a large P Ñ Ẽ
ref /P

nr
ref . Then

in this configuration, ωÑ Ẽ ≈ 0 where ∆θref ≈ 0. Since P Ñ Ẽ
ref /P

nr
ref ≪ 1 under ordinary

conditions, the systematic contribution is then proportional to two small quantities.

Under optimized conditions, ∆θref ≈ 0, we directly measure the systematic error slope

∂ωÑ Ẽ/∂(P Ñ Ẽ
ref /P

nr
ref) = 24(35) mrad/sec by performing a linear regression on ωÑ Ẽ under

ordinary conditions and conditions with a deliberately applied P Ñ Ẽ
ref /P

nr
ref = 0.1. Data with

a large value of P Ñ Ẽ
ref /P

nr
ref is taken approximately once per day. This systematic error slope

is consistent with zero.

Next, we must measure the intrinsic correlated power (or equivalent correlated Rabi

frequency), ∆P Ñ Ẽ
ref , under ordinary conditions. To do this, we use the AC Stark shift

effect of Eq. 4.26. The intentional parameter variation data with P Ñ Ẽ
ref /P

nr
ref = 0.1 and

B = 26 mG (corresponding to φB̃ ≈ π
4 rad) creates a large ωÑ ẼB̃ = dθÑ ẼB̃

eff /τ . Given the
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known, large P Ñ Ẽ
ref /P

nr
ref for this intentional parameter variation data, we compute dωÑ ẼB̃

δP =

P Ñ Ẽ
ref
P nr

ref

B
mG ×168(4) mrad

sec . Using this relation, for ordinary EDM data at B = 26 mG (where the

AC Stark shift effect is amplified), we compute P Ñ Ẽ
ref /P

nr
ref = ωÑ ẼB̃[mrad/sec]/(26 × 168),

which is valid under the assumption that the only source of ωÑ ẼB̃ arises due to the AC

Stark shift effect with a non-zero intrinsic ΩÑ Ẽ
r (effective P Ñ Ẽ

ref ). We find P Ñ Ẽ
ref /P

nr
ref =

−3.1(3)×10−3, quite inconsistent with zero and much larger than the values (consistent with

zero) obtained from continuously monitored mesaurements of the refinement laser power6,

P Ñ Ẽ
ref /P

nr
ref [logged] = −1.5(14) × 10−5. The inferred shift due to this systematic would

therefore be dωÑ Ẽ
δP = ∂ωÑ Ẽ/∂(P Ñ Ẽ

ref /P
nr
ref) ×P Ñ Ẽ

ref /P
nr
ref = −74(107)µrad/sec, consistent with

zero. We have decided to include the uncertainty in this systematic error contribution in

our systematic error budget, but have not subtracted the shift of −74µrad/sec because we

have only indirect evidence that the measured value of ωÑ ẼB̃ 6= 0 arises entirely due to

P Ñ Ẽ
ref 6= 0 (or an equivalent ΩÑ Ẽ

r 6= 0). For a summary of parameters related to the P Ñ Ẽ

systematic, see Table 4.4.

4.8 Effects of a correlated BẼ

A well-understood method of generating an EDM systematic arises through two simulta-

neous imperfections. If a component of the applied magnetic field is correlated with the Ẽ

switch, such that Bz = BBB̃ + B̃Ẽ Ẽ , then we would expect a resulting Ẽ-correlated Zeeman

precession, ωẼ = −gµBB̃Ẽ . If, furthermore, the g-factor does not perfectly reverse between

Ñ = ±1 states, g = gnr + ∆gÑ , then we will have an EDM systematic shift,

dωÑ Ẽ
∆g = −∆gµBBẼ =

∆g

g
ωẼ . (4.29)

An Ẽ-correlated magnetic field could arise, for example, due to a finite impedance be-

tween the electric field plates. In this case, current would flow between the field plates in a

direction determined by the sign of the applied voltage, i.e., the Ẽ state. This current could

generate a magnetic field component BẼ .

6. I quote the central value here as the median, since the values among superblocks are non-normally
distributed.
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The second ingredient necessary to cause an EDM systematic dωÑ Ẽ
∆g is a difference in

the g-factor between Ñ = ±1. Due to perturbations to the molecular states, we know that

such a g-factor difference exists[146, Sec. 2.1.3]7:

g(J, Ñ , E) = g(J) + η(J)EÑ , (4.30)

where in ACME I, it was found that η(J = 1) = −0.79(1) nm/V, consistent with the value

measured in the ACME II data set, η(J = 1) = −0.82(1) nm/V. Thus ∆g = η(J)E . Recall

that η is computed from the ωÑ B̃ channel, η = −ωÑ B̃/(µBEB). The statistical sensitivity

of η in the ACME II dataset is not much improved over ACME I in large part because the

sensitivity of the measured value of η improves at higher magnetic field B, but in ACME II

we take only a small fraction of data at higher magnetic fields, B π
4

such that φ ≈ π
4 , and no

data at the highest ACME I magnetic fields, where φ ≈ π
2 . Furthermore, the data we do

take at B π
4

has a higher level of noise than our ordinary data, as discussed in Sec. 4.15.2.

To confirm the systematic error model Eq. 4.29, we applied a deliberately large BẼ and

observed a systematic error slope ∂ωÑ Ẽ/∂ωẼ = 1.5(2) × 10−3 when E = 80 V/cm, exactly

as expected: at this electric field, ∆g = ηE = −6.4 × 10−6 so that ∆g/g = 1.5 × 10−3.

We also monitor ωẼ throughout the final data set and observe a value consistent with

zero. The overall systematic error contribution requires the slope ∂ωÑ Ẽ/∂ωẼ to be adjusted

in proportion to E for each subset of the entire data set, consistent with the model for

η 6= 0. The resulting systematic error shift averaged over the entire data set is dωÑ Ẽ
∆g =

−0.7(5)µrad/sec, consistent with zero and several orders of magnitude smaller than the

statistical sensitivity of the EDM measurement.

The systematic error shift computed instead using the value of η measured in each

superblock, rather than using the systematic error slope ∂ωÑ Ẽ/∂ωẼ measured under condi-

tions of a deliberately applied BẼ , is consistent with the shift quoted above, with comparable

uncertainty: dωÑ Ẽ
∆g [η] = 1.0(6)µrad/sec. However, this value is merely a sanity check and

is not used in the systematic error budget. For a summary of parameters related to the ωẼ

7. Components beyond those written here – for example, a term that depends on Ñ but not E – are small
and typically neglected in our analysis.
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Imperfection Corresponding parameter Typical value Uncertainty

ωẼ BẼ 790µrad/sec 420µrad/sec
η Ñ -dependent g-factor −0.82 nm/V 0.01 nm/V

Quantity Value Uncertainty Units

∂ωÑ Ẽ/∂ωẼ 1.5 × 10−3 0.2 × 10−3 —

dωÑ Ẽ
∆g 1.0 0.6 µrad/sec

Table 4.5: Summary of ωẼ systematic parameters and shift. The imperfection, ωẼ , is a
precession frequency that is correlated with Ẽ , which can arise due to a correlated magnetic
field, BẼ . Together with the non-zero difference between the g-factors of the Ñ = ±1
states (characterized by the molecular constant η), this correlated precession frequency can
“leak” into the EDM channel to produce a systematic slope, ∂ωÑ Ẽ/∂ωẼ . We compute the
systematic slope by comparing ωÑ Ẽ in the presence of a deliberately applied large value of
BẼ ≈ 1.3 mG (producing ωẼ ≈ 50 rad/sec), and the value of ωÑ Ẽ under ideal conditions.
Because the systematic slope depends on E , we compute a weighted average, dωÑ Ẽ

∆g , of the
systematic shifts under different conditions throughout the EDM data set. For a given value

of E , the systematic shift, dωÑ Ẽ
∆g = ∂ωÑ Ẽ

∂ωẼ
ωẼ , is computed using the measured systematic

slope when E = 80 V/cm (value of slope shown in table, consistent with zero), adjusted for
the relevant magnitude of the electric field, and the average value of ωẼ measured for the
subset of EDM data with the relevant value of E .

systematic, see Table 4.5.

4.9 Frequency-contrast correlations

We have observed a well-understood correlation between ωÑ Ẽ and certain components of

the contrast magnitude, namely |C|Ñ ẼB̃ and |C|Ñ Ẽ (see Fig. 4.4). This correlation is a

necessary consequence of the large φB̃ and φnr phase components. We can see this by

supposing that |C|s̃ ≪ |C|nr for any combination of switches s̃, but that |C|s̃ 6= 0 precisely

either due to an intrinsic offset to the parity component or due to random measurement

noise. Then by Taylor expanding the defining relation φ = A
2|C| and considering only the

resulting component that is odd under Ñ Ẽ , we find

ωÑ Ẽ =
AÑ Ẽ

2τ |C|nr
− ωB̃ |C|Ñ ẼB̃

|C|nr
− ωnr |C|Ñ Ẽ

|C|nr
− · · · , (4.31)

where in fact there is a correction term for every frequency component ωs̃. However, the

frequency components due to Zeeman precession and non-reversing offset angles between
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Figure 4.4: Scatter plot data showing correlations between ωÑ Ẽ with |C|Ñ ẼB̃ and |C|Ñ Ẽ for
all superblocks in the EDM data set. Error bars omitted for clarity.

the readout and preparation bases, ωB̃ and ωnr, respectively, are much larger than any

other frequency components. As a result, only the terms explicitly appearing in Eq. 4.31

are statistically significant at the ACME II sensitivity.

Let us consider, for the moment, the possibility that there is no intrinsic correlation

of the contrast magnitude with the experimental switches listed. However, in any given

experiment we will typically have 〈|C|Ñ ẼB̃〉 ∼ 〈|C|Ñ Ẽ〉 ∼ σ|C| 6= 0, i.e., the average measured

value will be on the same order as the uncertainty in the contrast (averaged over the entire

dataset). This will have the effect of introducing shifts in ωÑ Ẽ that are proportional to ωB̃

and ωnr, respectively.

When exploring correlations in the dataset, we discovered that the average Pearson

correlation coefficient of ωÑ Ẽ vs. |C|Ñ ẼB̃ is the fairly remarkable value of −0.45, which is

significant at the 15σ level, due to the linear dependence of ωÑ Ẽ on |C|Ñ ẼB̃ seen in Eq. 4.31.

Likewise, the correlation coefficient between ωÑ Ẽ and |C|Ñ Ẽ is 0.08, which is significant at

2.7σ. No other correlations between ωÑ Ẽ and contrast channels was significant, as expected

based on Eq. 4.31 and the relative size of other frequency parity components of ω compared

to ωÑ ẼB̃ and ωnr.

As expected, the average values of |C|Ñ ẼB̃ and |C|Ñ Ẽ are consistent with zero over the

entire data set, 〈|C|Ñ ẼB̃〉 = −2.4(77) × 10−6 and 〈|C|Ñ Ẽ 〉 = −8.5(45) × 10−6.
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To subtract or not?

It should perhaps not be obvious that the “true” value of the EDM is obtained by subtracting

the contributions due to ωB̃|C|Ñ ẼB̃/|C|nr and ωnr|C|Ñ Ẽ/|C|nr. Doing so would be equivalent

to calculating the EDM from ωÑ Ẽ → [Asign(C)]Ñ Ẽ

2τ |C|nr alone, rather than
[Asign(C)

2τ |C|
]Ñ Ẽ

. Each

choice has distinct merits. In ACME I, it was observed that (due to the different state

preparation method used there; see [146, Appendix E]), components of the contrast were

susceptible to significant correlations; e.g., 〈|C|Ñ Ẽ〉 6= 0. In this case, AÑ Ẽ

2|C|nr would be Ñ Ẽ-

correlated even if the physical molecular phase φ were completely uncorrelated with any

switches (an uncorrelated phase, together with a correlated contrast, necessarily implies a

compensatingly correlated asymmetry). Thus φEDM
biased = AÑ Ẽ

2|C|nr would give a biased estimate

of the EDM value.

However, we have every indication that |C|Ñ Ẽ and |C|Ñ ẼB̃ are not biased away from 0

on average at the level of our statistical sensitivity: they are only non-zero at a level that

is expected from statistical noise alone, and we know of no mechanism by which we should

expect a bias in |C|Ñ Ẽ or |C|Ñ ẼB̃ in ACME II.

In this case, a sufficiently large “systematic slope” such as ∂ωÑ Ẽ/∂|C|Ñ Ẽ couples to a

statistically random offset |C|Ñ Ẽ to introduce a shift in ωÑ Ẽ . An estimate of ωÑ Ẽ using Eq.

4.31 is unbiased in the sense that the shift due to ∂ωÑ Ẽ/∂|C|Ñ Ẽ has a random magnitude

and direction. However, for any given run of the experiment, the shift will move ωÑ Ẽ away

from its ideal, long-run average value of AÑ Ẽ

2τ |C|nr (in the case that no components of the

contrast are intrinsically correlated with experimental switches).

Based on this reasoning, we have decided to subtract the contributions to ωÑ Ẽ from

the statistically significant “systematic slopes” ∂ωÑ Ẽ/∂|C|Ñ Ẽ and ∂ωÑ Ẽ/∂|C|Ñ ẼB̃ and the

average values of |C|Ñ Ẽ and |C|Ñ ẼB̃ over the EDM data set. This choice reflects judgment

that the “true,” long-run average values of |C|Ñ Ẽ and |C|Ñ ẼB̃ are likely to be closer to 0

than to their measured values (which are, once again, consistent with 0 at the expected

statistical level).

Since we know that ωB̃ depends on B, and furthermore ωnr can generally depend on the

experimental configuration, we separately compute systematic slopes ∂ωÑ Ẽ/∂|C|Ñ Ẽ and
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Imperfection Corresponding parameter Typical value Uncertainty

〈|C|Ñ ẼB̃〉, 〈|C|Ñ Ẽ〉 Statistical fluctuations ∼ 10−5 —

ωB̃, ωnr Zeeman, phase offsets . 103 rad/sec —

Quantity Value Uncertainty Units

∂ωÑ Ẽ/∂|C|Ñ Ẽ(B̃) ∼ 50 — rad/sec
dωÑ Ẽ

|C| 77 125 µrad/sec

Table 4.6: Summary of |C|Ñ ẼB̃ and |C|Ñ Ẽ systematic parameters and shifts. The imperfec-
tions, 〈|C|Ñ ẼB̃〉 and 〈|C|Ñ Ẽ〉, are correlated components of the contrast magnitude, which
arise due to statistical noise in the contrast measurement. Together with large precession
frequency components, ωB and ωnr (arising from Zeeman precession and global phase off-
sets, respectively), these statistical fluctuations produce systematic slopes, ∂ωÑ Ẽ/∂|C|Ñ ẼB̃

and ∂ωÑ Ẽ/∂|C|Ñ Ẽ . We compute the systematic slopes from a linear fit of ωÑ Ẽ vs. |C|Ñ ẼB̃

and |C|Ñ Ẽ using data under ideal conditions throughout the EDM data set. Because the
systematic slopes may depend on E and B, we compute a weighted average, dωÑ Ẽ

|C| , of the
systematic shifts with each value of E and B. For a given value of E and B, a systematic

shift, dωÑ Ẽ = ∂ωÑ Ẽ

∂|C|Ñ Ẽ(B̃)
ωnr(B̃), is computed using the measured linear fit and 〈|C|Ñ Ẽ(B̃)〉 mea-

sured in the corresponding subset of the EDM dataset. Representative values of 〈|C|Ñ Ẽ(B̃)〉
and the systematic slopes are given in the table.

∂ωÑ Ẽ/∂|C|Ñ ẼB̃, as well as offset values 〈|C|Ñ Ẽ〉 and 〈|C|Ñ ẼB̃〉, separately for each value of B

and E throughout the data set. We then propagate the respective (eight) systematic shifts

and corresponding uncertainties in proportion to the relative contributions of each B, E

configuration to the statistical sensitivity of the EDM measurement. The resulting total

shift, from both correlations in all B and E states, is dωÑ Ẽ
|C| = 77(125)µrad/sec, consistent

with zero. For a summary of parameters related to the |C|Ñ ẼB̃ and |C|Ñ Ẽ systematics, see

Table 4.6.

4.10 Magnetic field gradient systematics

The final set of systematic errors that contribute a shift to ωÑ Ẽ arise from ambient mag-

netic field gradients in the interaction region, which do not reverse under any experimental

switches. We can amplify the effect of these ambient gradients by deliberately applying

large values of, e.g., (∂B/∂z)nr and (∂B/∂y)nr, where I’ll typically drop the nr superscript

in this section. As in previous sections, the only important cartesian component of ~B is Bz,

and we continue to write B ≡ Bz for shorthand. See Fig. 4.5 for each systematic prior to
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(a)

(b)

Figure 4.5: (a) ∂B/∂z systematic before suppression. (b) ∂B/∂y systematic before suppres-
sion. Both systematic slopes are comparable. Data from Runs 150, 151, and 153.
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suppression.

Let us consider the effect of ∂B/∂z first. We initially observed a systematic slope

∂ωÑ Ẽ

∂(∂B/∂z) ∼ 100 mrad/(mG/cm), though the systematic slope shifted by up to ∼ 50% over

many-hour to many-day timescales. We can understand this effect using the formalism of

Sec. 4.2.1. If there is a spatially-dependent, Ñ Ẽ-correlated component of the molecular

distribution that is prepared or read out, δρ(~x), then a spatially-dependent distribution

of the molecular phase induced by a magnetic field gradient, δφ(~x), will contribute to a

systematic shift in the average measured phase of dφ̄ =
∫

dV ǫδρÑ Ẽδφnr/Nnr, where ǫ(~x) is

the detection efficiency as a function of the molecular position in the readout region. As

we saw previously, in the special case of a constant phase gradient φ = φ0 + ∂φ
∂z z, the phase

measured over the entire population distribution is modulated by dφ̄Ñ Ẽ = ∂φ
∂z z

Ñ Ẽ
CM, where

zÑ Ẽ
CM is an Ñ Ẽ-correlated shift in the center of mass of the detected molecular population

distribution. Here, ∂φ
∂z = −gµB ∂B

∂z τ is proportional to the applied magnetic field gradient

along z.

The usual suspect for the source of Ñ Ẽ-dependence is Enr. After seeing the magnetic

field gradient systematic, Cris Panda quickly realized that a non-zero Enr can cause an

Ñ Ẽ-correlated center of mass of the molecular distribution by the following mechanism (see

Fig. 4.7):

1. The molecules’ ballistic trajectories generate a very strong position-velocity correla-

tion, z ≈ vz
vx
L, in the interaction region at a distance L ≈ 1.1 m downstream of the

source (correlation coefficient ∼ 0.98).

2. The detuning ∆ for a particular velocity class is proportional to its transverse veloc-

ity vz due to the Doppler shift ∆Dop = vz/λ, where λ = 703 nm is the transition

wavelength.

3. Since the readout beams are not fully saturated, there is a special velocity class (value

of vz) for which ∆ = ∆0 + ∆Dop = 0, which is preferentially detected, where ∆0

includes all contributions to the detuning other than the Doppler shift. In particular,

the velocity class on resonance, for a given value of ∆0, is vres
z = −∆0λ.
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Figure 4.6: ωÑ Ẽ vs. ∆Ñ Ẽ (due to deliberately applied Enr) in the presence of ∂B
∂z = 0.74

mG/cm. The slope is consistent with the model of an Ñ Ẽ-correlated shift in the molecular
center of mass, zÑ Ẽ

CM, probed by the readout beam due to a combination of the position-
velocity correlation in the probe region and the Doppler shift ∆Dop ∝ vz, for a readout laser
linewidth of 2.5 MHz (1σ). Data from Run 156.

4. Due to the correlation between position and velocity, there is therefore a preferred

position class (value of z) that is most efficiently detected: zres ≈ −∆0λL/vx.

5. Enr ∼ 5 mV/cm generates ∆Ñ Ẽ
0 ∼ 2π × 5 kHz in the cleanup and readout beams due

to the Ω-doublet structure of the H state, so zÑ Ẽ
res ∼ −100µm.

6. Therefore, with a typical gradient ∂B/∂z ∼ 0.8 mG/cm applied during systematic

checks, we would expect up to φÑ Ẽ ∼ 300µrad due to this effect, in the limit of poor

laser saturation.

In summary, there is a center-of-mass shift in the molecular population, which is correlated

with Ñ Ẽ , and this shift couples to a B gradient, producing a correlated average measured

phase. Note that the simple estimates above apply to the limiting case of poor readout

laser saturation. In the opposite limit of perfect readout laser saturation, there can be no

systematic effect because the readout efficiency is independent of ∆Ñ Ẽ (generated by Enr)

and ∆Dop. Prior to suppression of the systematic, measurements of ∂ωÑ Ẽ

∂∆Ñ Ẽ
in the presence of

a deliberately applied ∂B
∂z = 0.74 mG/cm, where ∆Ñ Ẽ is generated via a deliberately applied

Enr, gave ωÑ Ẽ [rad/sec] = −3.46(2) × ∆Ñ Ẽ [2π × MHz].

We can validate the model with Monte Carlo trajectory simulations of the molecular

trajectories in our apparatus, to compare with the observed magnitude of the systematic
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error. We will follow approximately the chain of logic above, using the same numbered steps

(though the correspondence is not exact between the detailed steps below and the individual

lines in the heuristic model just discussed). The only complication, when computing the

actual expected contribution of the systematic error, is that the lineshape of the transition

must be considered.

First, (1) the simulations verify that vz [m/s] ≈ 1.2 × z [cm]. (2-3) The LHS of this

relationship, a velocity, has a one-to-one correspondence with a Doppler shift, ∆Dop = vz
λ ,

where λ = 703 nm is the wavelength of the H ↔ I transition. (4) The RHS of the same

relationship, a position, has a one-to-one correspondence with a Zeeman precession phase

in the presence of a magnetic field gradient, φ = −τ × gHµB
∂B
∂z z. With a typical systematic

check gradient of 0.8 mG/cm, we therefore obtain a correlated phase and detuning (i.e.,

Doppler shift), ∆Dop

2π×MHz ≈ −0.06 φ
mrad , where the sign arises from the negative g-factor of

the H state.

To proceed with our model of the systematic effect using the Monte Carlo simulations,

we must consider the effect of the readout transition lineshape, which was not addressed

in the simplest version of our model above (i.e., the numbered list of steps). We assume

a detected population fraction of the ensemble, ǫ(∆Dop) ∝ exp[−(∆Dop − ∆0)2/(2σ2
∆)],

that is approximately normally distributed as a function of ∆Dop with σ∆ = 2π × 2.5

MHz (based on Doppler scans of the readout transition), relative to the overall detuning

∆0. In the Monte Carlo simulation, we compute a weighted average of measured phases,

φ̄ =
∑

i wiφi/
∑

i wi, where φi is determined by the local Zeeman precession (a function

of the molecule’s position in the interaction region), and the weight factor wi = ǫ(∆Dop)

is determined by the molecule’s Doppler shift (a function of its transverse velocity). We

then find a linear dependence of the average measured phase on small detunings, φ̄
mrad =

−4(1) × ∆0
2π×MHz ↔ ω

rad/sec = −4(1) × ∆0
2π×MHz . Here, I’ve determined the uncertainty by

variations in the simulation results over reasonable parameter ranges (e.g., assumed position

and velocity distributions of the molecular source).

Next, we relate the detuning ∆0 above to ωÑ Ẽ as follows: (5) The detuning ∆0 becomes

correlated with Ñ Ẽ in the presence of Enr, via ∆0 → ∆Ñ Ẽ = DEnr. (6) Then we expect

ωÑ Ẽ [rad/sec] = −4(1) × ∆Ñ Ẽ [2π × MHz] for the systematic model considered here, in
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excellent agreement with the observed value of ωÑ Ẽ [rad/sec] = −3.46(2)×∆Ñ Ẽ [2π × MHz].

With ∆Ñ Ẽ
0 ∼ 5 kHz (a typical value due to the ambient value of Enr), we therefore expect

dφÑ Ẽ ∼ 20µrad ↔ dωÑ Ẽ ≈ 20 mrad/sec. This is a large but incomplete fraction of the

observed ∂B
∂z systematic before suppression (dωÑ Ẽ ∼ 100 mrad/sec with ∼ 1 mG/cm applied

∂B
∂z ). Hence, we concluded that there were likely other contributions to the systematic shift

associated with a large magnetic field gradient, ∂B
∂z .

dEnr

dz
component

Since the model just discussed explains only part of the overall magnetic field gradient sys-

tematic slope, ∂ωÑ Ẽ/∂(∂B/∂z), we write dωÑ Ẽ = ωÑ Ẽ
0 + α0(Enr)∂B

∂z + α1
∂B
∂z , where α1 6=

α1(Enr) is some constant that is independent of Enr and is not explained by the systematic er-

ror model just discussed. In particular, before suppression, α1 ∼ 100 (mrad/sec)/(mG/cm),

but as mentioned previously its value would drift by ∼ 50% from day to day. We understand

this contribution to the systematic slope, which is independent of Enr, as arising from the

following mechanism (see Fig. 4.8).

We once again need to identify a correlated shift in the center of mass, zÑ Ẽ
CM, that couples

to the phase gradient ∂φ
∂z induced by the applied magnetic field gradient ∂B

∂z . This time, we

consider the effect of a non-reversing electric field gradient ∂Enr

∂z , which we can measure to

be on the order of ∼ 5 mV/cm2 (see Sec. 5.1.1). This field gradient generates a correlated

detuning gradient ∂∆Ñ Ẽ

∂z ∼ 2π × 5 kHz/cm.

Consider the effect of this gradient on the STIRAP state transfer. At any particular

location, the value of Enr(z) arising from the gradient ∂Enr

∂z creates a correlated two-photon

STIRAP detuning δÑ Ẽ = DEnr(z) = D ∂Enr

∂z z. Recall that the STIRAP beams travel ver-

tically, along ŷ, and are spread out along z to address the entire molecular population.

Since the efficiency η of the STIRAP state transfer depends on the two-photon detuning

δ ≡ (∆690 − ∆1090)/2, we find η(z) = η0 + ∂η
∂δ

∂δÑ Ẽ

∂z z, where η0 is the state transfer efficiency

at z = 0. In the simplified model that the population density of molecules entering the

STIRAP beams is uniform along z with half-width a, the shift in the center-of-mass is

zÑ Ẽ
CM =

∫ a
−a dz η(z)z/

∫ a
a dz η(z) = a2

3η0

∂η
∂δ

∂δÑ Ẽ

∂z .

To estimate the numerical size of this shift, we use a simple gaussian 2-photon lineshape
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Figure 4.7: Representation of ∂B/∂z× Enr systematic. The top (bottom) panel depicts the
case where Ẽ = +1(−1); both panels show Ñ = +1. A magnetic field gradient, ∂B/∂z, is
indicated by dark green arows. Molecules are prepared via STIRAP lasers in the H elec-
tronic state, uniformly along z (horizontal green band), from the initial X state population
(horizontal pink band). Black arrows in precession region represent spin alignment of H
state molecules. If the readout beam is on resonance with molecules that have vz = 0,
then it will be shifted off resonance (in opposite directions) for molecules with ±vz. The
non-reversing electric field Enr (purple arrows, shown as originating from a patch charge
on an electric field plate) also shifts the effective detuning, but acts on all molecules in
the same way (purple arrows on the molecular lineshapes: right-pointing for Ẽ = +1 and
left-pointing for Ẽ = −1). These effects combine so that one region of space is preferentially
addressed (black arrows in readout region; opacity represents readout efficiency), and the
magnetic field in this region disproportionately determines the measured phase. Because
the detuning associated with Enr reverses with Ñ and Ẽ , the effect on the measured phase
appears in the EDM channel, ωÑ Ẽ .
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Figure 4.8: Representation of ∂B/∂z× ∂Enr

∂z systematic. The top (bottom) panel depicts the
case where Ẽ = +1(−1); both panels show Ñ = +1. A magnetic field gradient, ∂B/∂z, is
indicated by dark green arows. A non-reversing electric field, Enr (purple arrows in STIRAP
region), causes a detuning, preferentially preparing molecules where Enr cancels an overall
two-photon detuning in the STIRAP lasers (purple arrows on lineshape). Due to the non-
reversing electric field gradient, ∂Enr/∂z, this cancellation occurs either for molecules along
+ẑ or −ẑ, depending on the Ẽ state (compare top, bottom). Thus, the prepared population
density in the H state is non-uniform along z (horizontal green band, shown with opacity
gradient), despite the uniform initial X state population (horizontal pink band). Black
arrows in precession region represent spin alignment of H state molecules, which is non-
uniform along z due to ∂B/∂z. Opacity of spin arrows in readout region represent density
of molecular population that is probed by the readout beam, and is non-uniform along z
due to the gradient of molecular population prepared via STIRAP. Therefore, the average
measured spin orientation changes in Ñ Ẽ = +1 vs. Ñ Ẽ = −1, leading to a non-zero value
of ωÑ Ẽ .
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Figure 4.9: Linear dependence of systematic slope ∂ωÑ Ẽ/∂(∂B/∂z) on two-photon STI-
RAP detuning δ. Here (Run 213), the detuning of the 690 nm laser was adjusted;
we have verified that detuning the 1090 nm laser has an equal and opposite effect on
the systematic slope as expected. By adjusting the two-photon detuning, we can tune
the overall systematic slope ∂ωÑ Ẽ/∂(∂B/∂z) to zero. A fit is shown, for the model

ωÑ Ẽ = ωÑ Ẽ
0 + ∂ωÑ Ẽ

∂δ δ+ ∂ωÑ Ẽ

∂(∂B/∂z)(∂B/∂z)+ ∂2ωÑ Ẽ

∂δ∂(∂B/∂z)δ(∂B/∂z), which has a clear dependence
on the product δ(∂B/∂z) but neither δ nor ∂B/∂z alone.
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model, η(δ) = η0 exp

(

− δ2

2σ2
ST

)

so that ∂η
∂δ = −η0

δ
σ2

ST
exp

(

− δ2

2σ2
ST

)

, where σST is the 1σ two-

photon linewidth. Note that in the limit of perfect STIRAP laser saturation, σST → ∞, the

transfer efficiency is independent of detuning and therefore no systematic effect can occur.

For a finite STIRAP two-photon linewidth, and small two-photon detunings δ ≪ σST,

zÑ Ẽ
CM ≈ a2

3

δ

σ2
ST

D
∂Enr

∂z
. (4.32)

This gives us a “knob” to tune out the systematic slope ∂ωÑ Ẽ/∂(∂B/∂z), namely the two-

photon detuning δ; see Fig. 4.9. By adjusting this detuning to δ ≈ 0, we can set the

systematic slope ∂ωÑ Ẽ/∂(∂B/∂z) = 0. In particular, we apply a deliberate ∂B
∂z ∼ 1 mG/cm

and adjust δ until the systematic contribution dωÑ Ẽ
∂B/∂z = ∂ωÑ Ẽ/∂(∂B/∂z) × ∂B/∂z is con-

sistent with zero. Then, the systematic contribution is proportional to small quantities

δ/σST and the ambient magnetic field gradient, (∂B/∂z)ambient ≈ −4µG/cm. Furthermore,

we measure the ambient non-reversing magnetic field gradient using in situ magnetome-

ters in the interaction region. By applying compensating field gradients during the EDM

data set, we obtain a value for the ambient magnetic field gradient after compensation,

(∂B/∂z)comp = −0.5(60)µG/cm. The uncertainty in the remaining gradient is much larger

than the central value due to possible systematic offsets in the measurement; see Sec. 5.2.5.

Nevertheless, with the magnetic field gradient cancelled to the level of our measurement

precision, and δ set such that the systematic slope is consistent with zero, the remaining

systematic error contribution is proportional to two small quantities.

Before describing the calculation of the systematic error mean and uncertainty, it is im-

portant to point out that using δ to minimize the systematic slope is equivalent to using the

∂Enr/∂z contribution to cancel the Enr contribution. We do not minimize each contribution

independently. By adjusting the STIRAP detuning, we can zero out the systematic. Note

that we expect the STIRAP detuning to only affect the ∂Enr

∂z systematic, so when the total

∂B
∂z systematic is set to 0, the two sources must have equal and opposite contributions.

To measure the remaining contribution of the ∂B/∂z systematics, we measure ωÑ Ẽ un-

der conditions of a deliberately large value of ∂B/∂z every few hours in the EDM data

set. We compute a linear regression against data under ideal conditions to measure the
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systematic slope ∂ωÑ Ẽ/∂(∂B/∂z) = −5.9(31) (µrad/sec)/(µG/cm) during the EDM data

set. As mentioned previously, the ambient magnetic field gradient is measured using mag-

netometers in the interaction region; the details of this measurement are described in Sec.

5.2.5. We find (∂B/∂z)comp = −0.5(60)µG/cm after compensation with applied magnetic

field gradients. This would give a systematic error contribution dωÑ Ẽ
∂B/∂z = 3(35)µrad/sec.

However, we calculate the EDM systematic shift and uncertainty due to both ∂B/∂z and

∂B/∂y together. The systematic errors that depend on ∂B/∂y are described below.

∂B/∂y systematics

Before suppression of the ∂B/∂z systematic, we saw a comparable systematic slope

∂ωÑ Ẽ/∂(∂B/∂y) ∼ 100 (mrad/sec)/(mG/cm). (4.33)

We can understand this dependence using exactly the same models developed to under-

stand the ∂B/∂z systematics. In particular, because the readout lasers travel along ẑ

and the STIRAP lasers travel along ŷ, the same mechanisms that generate a systematic

slope ∂ωÑ Ẽ/∂(∂B/∂z) will generate the slope ∂ωÑ Ẽ/∂(∂B/∂y) with the interchange of the

roles of the STIRAP and readout beams. Informally, we simply substitute y ↔ z and

STIRAP↔readout.

Consider first the Enr contribution to the ∂B/∂z systematic slope, in which the position-

velocity correlation in the molecular beam creates a position-detuning correlation due to

the Doppler shift. This shifts the average position of resonant molecules and, due to the

finite saturation of the readout transition, shifts the center of mass of probed molecules.

The Ñ Ẽ-correlated shift in the center of mass, zÑ Ẽ
CM, is proportional to the Ñ Ẽ-correlated

detuning (unrelated to the Doppler shift) arising from Enr. This center-of-mass shift com-

bines with the precession frequency gradient associated with the magnetic field gradient in

the apparatus, dωÑ Ẽ = zÑ Ẽ
CM × ∂ω

∂z .

The analogous effect occurs in the STIRAP beams provided ∂B/∂y 6= 0. Explicitly, the

correlation between y and vy creates a position-detuning correlation due to the Doppler shift

in the STIRAP beams, which travel along ŷ. This shifts the average y-position of resonant
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molecules and, due to the finite saturation of the STIRAP transition, shifts the center of

mass yCM of molecules transferred to the H state manifold. The Ñ Ẽ-correlated shift in the

center of mass, yÑ Ẽ
CM, is proportional to the Ñ Ẽ-correlated two-photon detuning (unrelated to

the Doppler shift) arising from Enr. This center-of-mass shift combines with the precession

frequency gradient associated with the magnetic field gradient in the apparatus, dωÑ Ẽ =

yÑ Ẽ
CM × ∂ω

∂y .

Now consider the ∂Enr

∂z contribution to the ∂B/∂z systematic slope, in which the Ñ Ẽ-

correlated detuning gradient along z, together with an overall offset in the two-photon

detuning δ and incomplete saturation of the STIRAP transition, leads to a shift in the

Ñ Ẽ-correlated center of mass zÑ Ẽ
CM. This center-of-mass shift combines with the precession

frequency gradient associated with the magnetic field gradient in the apparatus, dωÑ Ẽ =

zÑ Ẽ
CM × ∂ω

∂z .

The analogous effect occurs in the readout beams provided ∂B/∂y 6= 0. Any ∂Enr

∂y will

cause an Ñ Ẽ-correlated detuning gradient along y. Together with an overall offset in the

readout detuning ∆ and incomplete saturation of the readout transition, this leads to a

shift in the Ñ Ẽ-correlated center of mass yÑ Ẽ
CM. This center-of-mass shift combines with the

precession frequency gradient associated with the magnetic field gradient in the apparatus,

dωÑ Ẽ = yÑ Ẽ
CM × ∂ω

∂y .

Quantitatively, we have measured that ∂Enr

∂y is ∼ 10% as large as ∂Enr

∂z (see Sec. 5.1.1),

and moreover the probe beam is better-saturated than the STIRAP beam. Therefore, ∂Enr

∂y

effect is expected to be negligible at the ACME II sensitivity.

On the other hand, the ∂B/∂y × Enr systematic is not necessarily small compared to

the ∂B/∂z × Enr systematic, as we saw prior to suppressing the total ∂B/∂z systematic

error contribution. However, the contribution of ∂B/∂y × Enr depends implicitly in δ: a

non-reversing electric field, Enr, contributes a correlated two-photon detuning that “moves”

the preparation efficiency along the local STIRAP two-photon lineshape (which depends on

δ). That said, it is difficult to write down a simple analytic dependence of ∂ωÑ Ẽ/∂(∂B/∂y)

on the two-photon detuning, δ. We instead rely on the empirical change of the systematic

slope when we adjust δ. We find that when we set δ to null the total ∂B/∂z systematic,

the total ∂B/∂y systematic (presumed to be entirely attributable to the ∂B/∂y× Enr effect
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occuring in the STIRAP lasers) is also consistent with zero, which we verified both before

and after the EDM data set.

Recall that prior to suppression of either magnetic field gradient systematic by tuning

δ ≈ 0, we observed comparable magnitudes of ∂ωÑ Ẽ/∂(∂B/∂z) and ∂ωÑ Ẽ/∂(∂B/∂y); see

Fig. 4.5. As just mentioned, after setting δ ≈ 0 by minimizing the ∂ωÑ Ẽ/∂(∂B/∂z)

systematic slope, the ∂ωÑ Ẽ/∂(∂B/∂y) was verified to also be consistent with zero. We

compute a systematic error shift due to ∂ωÑ Ẽ/∂(∂B/∂y) by using the observed ratio of

systematic slopes, R = [∂ωÑ Ẽ/∂(∂B/∂y)]/[∂ωÑ Ẽ/∂(∂B/∂z)] ≈ 1.1 taken before suppression

of the systematics, and the value of ∂ωÑ Ẽ/∂(∂B/∂z) measured throughout the EDM data

set. The value of (∂B/∂y)ambient = 1(6)µG/cm is measured using magnetometers in the

interaction region as described in Sec. 5.2.5. The magnetic field gradient along y was not

compensated using the magnetic field coils. Therefore, the total systematic shift due to

magnetic field gradients is

dωÑ Ẽ
∂B =

∂ωÑ Ẽ

∂(∂B/∂z) ((∂B/∂z)comp +R(∂B/∂y)ambient). (4.34)

The uncertainties in (∂B/∂z)comp and (∂B/∂y)ambient are independent, so the effec-

tive parameter offset is (∂B/∂z)comp + R(∂B/∂y)ambient ≈ −1(9)µG/cm. Propagating

the uncertainty in the systematic slope and effective parameter offset, we find dωÑ Ẽ
∂B =

7.7(689)µrad/sec, consistent with zero and significantly below the statistical sensitivity of

the EDM dataset. For a summary of parameters related to the ∂B/∂z and ∂B/∂y system-

atics, see Table 4.7.

4.11 Total uncertainty budget

Based on the well-understood mechanisms for the observed systematic slopes, we decided to

include in the uncertainty budget contributions from specific systematic check parameters

for which the systematic slope was expected and observed to be consistent with zero. See.

Table 4.8 for all systematic error shifts and uncertainties included in the EDM error budget.

Due to the presence of magnetic field gradient systematics dωÑ Ẽ
∂B/∂z and dωÑ Ẽ

∂B/∂y, we in-
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Imperfection Corresponding parameter Typical value Uncertainty

∂B/∂z, ∂B/∂y B-field gradient −0.5, +1.0 µG/cm 6.0 µG/cm

Enr ∆Ñ Ẽ −2.6 mV/cm 1.6 mV/cm

∂Enr/∂z ∂∆Ñ Ẽ/∂z −7 mV/cm2 3 mV/cm2

δ zÑ Ẽ
CM ∼ 30 kHz —

Quantity Value Uncertainty Units

∂ωÑ Ẽ/∂(∂B/∂z) -5.9 3.1 µrad/sec
µG/cm

dωÑ Ẽ
∂B 7.7 68.9 µrad/sec

Table 4.7: Summary of ∂B/∂z and ∂B/∂y systematic parameters and shifts. The imperfec-
tions, ∂B/∂z and ∂B/∂y, are ambient (non-reversing) magnetic field gradients. Together
with other imperfections, including a non-reversing electric field or its gradient, Enr or
∂Enr/∂z, and a non-zero two-photon STIRAP detuning, δ, these magnetic field gradients
produce systematic slopes, ∂ωÑ Ẽ/∂(∂B/∂z) and ∂ωÑ Ẽ/∂(∂B/∂y). We compute the ratio of
systematic slopes, R, from the linear fit of ωÑ Ẽ vs. ∂B/∂z and ∂B/∂y prior to suppression
of both systematic slopes. The value of ∂ωÑ Ẽ/∂(∂B/∂z) throughout the EDM data set is
computed by comparing ωÑ Ẽ in the presence of a deliberately large ∂B/∂z ∼ 1 mG/cm,
and ωÑ Ẽ under ideal conditions. We assume that the systematic slope of ∂ωÑ Ẽ/∂(∂B/∂y)
throughout the EDM data set is greater by a factor of R ≈ 1.1, consistent with observa-
tions prior to suppression of the systematic slopes. Suppression of the systematic slopes
was achieved by tuning the two-photon detuning, δ, to minimize ∂ωÑ Ẽ/∂(∂B/∂z). The

systematic shift, dωÑ Ẽ
∂B = ∂ωÑ Ẽ

∂(∂B/∂z)((∂B/∂z)comp +R(∂B/∂y)ambient), is computed using the
measured slope (consistent with zero) and the values of the gradient along z, (∂B/∂z)comp,
after compensation with small deliberately-applied magnetic field gradients, and the ambi-
ent gradient along y, (∂B/∂y)ambient. See Sec. 5.2.5 for the determination of these values.
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Parameter Shift Uncertainty Section

Enr -56 140 4.5.3
ωÑ Ẽ

ST (via dθλ/2) 0 1 4.6.3

P Ñ Ẽ
ref - 109 4.7

BẼ 1 1 4.8

|C|Ñ ẼB̃ and |C|Ñ Ẽ 77 125 4.9
∂B/∂z and ∂B/∂y 7 59 4.10

Other B-field gradients total (4) - 134 4.11
Non-reversing B-field Bnr - 106 4.11

Transverse B-fields (Bx, By) - 92 4.11
Refinement/readout laser detunings - 76 4.11

Ñ -correlated laser detuning, ∆Ñ - 48 4.11
Total systematic 29 310

Statistical 373
Total uncertainty 486

Table 4.8: Uncertainty budget for the EDM measurement. Parameters that were observed
to cause a shift are ordered by introduction in the text; parameters that were included for
conservative, due to a nominal similarity to parameters involved in understood systematic
errors, are ordered by contribution to the uncertainty. The statistical error bar is com-
puted only from EDM data taken under ideal conditions. All uncertainties are added in
quadrature. Hyphens indicate that no shift was subtracted.

cluded limits from possible contributions |dωÑ Ẽ
∂Bx/∂x

| < 55µrad/sec, |dωÑ Ẽ
∂By/∂y

| < 51µrad/sec,

|dωÑ Ẽ
∂By/∂x

| < 66µrad/sec, and |dωÑ Ẽ
∂Bz/∂x

| < 86µrad/sec. In addition, we included a limit

on |dωÑ Ẽ
Bnr | < 106µrad/sec, as well as contributions due to transverse fields, |dωÑ Ẽ

Bx
| <

73µrad/sec and |dωÑ Ẽ
By

| < 50µrad/sec. See Table 4.9 for details.8

Due to the role of the two-photon STIRAP detuning δ and effect of non-reversing

electric fields Enr via correlated detunings in the readout and probe beams, ∆Ñ Ẽ , we

included limits on the contributions to the EDM due to overall detunings in the refine-

ment laser |dωÑ Ẽ
∆ref

| < 63µrad/sec and common detunings in both the refinement and

probe lasers, |dωÑ Ẽ
∆ | < 36µrad/sec. Furthermore, we included a limit on the contribu-

tion from Ñ -correlated detunings, |dωÑ Ẽ
∆Ñ | < 48µrad/sec. The limits on all systematic

slopes (∂ωÑ Ẽ/∂∆ref , ∂ω
Ñ Ẽ/∂∆, and ∂ωÑ Ẽ/∂∆Ñ ) were determined directly by deliberately

applying large values of ∆ref , ∆, and ∆Ñ . The typical parameter values in each case were

8. Here, I quote the average limit obtained by all four sets of analysis codes. The value in Table 4.8 is
the average over analysis routines of the quadrature sum of each contribution. Thus the quadrature sum
of individual components quoted here differs from the value in the table by a few µrad/sec. A similar
discrepancy occurs for the limit on transverse B fields and laser detunings.
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Gradient Slope [(mrad/sec)/(mG/cm)] Typical [µG/cm] Limit [µrad/sec]

∂Bx/∂x −7.2(52) 6 55

∂By/∂y 0.1(65) 5 51

∂Bx∂y −5.0(42) 10 66

∂Bz/∂x 2.5(168) 5 86

Offset Slope [(mrad/sec)/mG] Typical [µG] Limit [µrad/sec]

Bx 5.8(234) × 10−3 300 73
By −59(316) × 10−3 150 50
Bnr
z −201(1136) × 10−3 80 106

Table 4.9: Non-reversing magnetic field gradients and offsets for which no statisti-
cally significant systematic slope was observed. Systematic slopes given in units of
(mrad/sec)/(mG/cm) and (mrad/sec)/mG for gradients and offsets, respectively. Typi-
cal values of gradients and offsets are given in units of µG/cm and µG, respectively. All
systematic error limits in µrad/sec. Each systematic slope was computed by deliberately
applying a large magnetic field gradient or offset (typically ∼ 1.5 mG/cm and ∼ 1 − 10

mG, respectively) and observing the resulting shift in ωÑ Ẽ . Typical parameter values were
obtained by placing conservative limits on the ambient magnetic field gradients or offsets
in the interaction region, as measured twice per day throughout the EDM data set us-
ing the fluxgate magnetometers in the interaction region, and supplemented with offline
measurements after all EDM data was acquired (see Sec. 5.2.5). The largest field compo-
nent is Bx, which we believe arises from ambient magnetization in the mu-metal endcaps
(positioned along ±x̂ relative to the electric field plates), which is not fully removed by
the degaussing procedure. The anomalously small systematic slope in ∂By/∂y is due to a
coincidental near-cancellation in the ∼ 1σ magnitude slopes, which are all statistically in-
significant, obtained from different analysis procedures; for example, my own analysis gives
a slope of 3.7(57) mrad/sec/(mG/cm). In order to isolate the systematic error contribu-
tion due to each designated magnetic field gradient, we compute and remove the expected
contribution due to ∂Bz/∂z, which necessarily arises due to Maxwell’s equations (e.g., the
nominal ∂By/∂y applied field gradient also generates a comparable ∂Bz/∂z, consistent with
∇ · ~B = 0).

Parameter Slope [(mrad/sec)/MHz] Offset [kHz] Limit [µrad/sec]

∆ref −1.1(26) 20 63
∆ −0.1(16) 20 36

∆Ñ −0.2(23) 20 48

Table 4.10: Laser detuning systematic error bounds. All systematic slopes were determined
by deliberately applying large detunings in the corresponding lasers and parity components
(typically 2 MHz). The typical parameter imperfections, 20 kHz, were determined from the
repeatability of setting the resonance condition for the lasers in each state (e.g., Ñ = ±1).
The overall and Ñ -correlated detunings, ∆ and ∆Ñ , are applied simultaneously to both
the refinement and probe lasers. Any systematic slope due to the probe laser detuning,
∆probe, would simply be a linear combination of the systematic slopes due to ∆ref and ∆.
Therefore, we do not compute a separate limit for a systematic effect arising from ∆probe.
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determined to be 20 kHz, limited by the resolution of the Doppler scans used to set the 703

nm laser on resonance. See Table 4.10 for details.

The central estimate for the total systematic shift is 29 µrad/sec, due to (1) non-reversing

electric fields, Enr, (2) residual Ñ Ẽ-correlated frequency originating in the STIRAP beams,

ωÑ Ẽ
ST , (3) leakage of a possible Ẽ-odd Zeeman frequency due to the non-zero g-factor differ-

ence between Ñ states, BẼ , (4) correlations of the EDM channel with components of the

contrast magnitude, |C|Ñ ẼB̃ and |C|Ñ Ẽ , and (5) magnetic field gradients, ∂B/∂z and ∂B/∂y.

The total systematic uncertainty (from contributions where only a limit was set as well as

those where a shift was subtracted) is 310 µrad/sec.

4.12 Asymmetry effects

We observed statistically significant offsets in the frequency components ωÑ ẼP̃R̃ = 5.3(5)

mrad/sec (for B < 26 mG), and ωÑ ẼB̃P̃R̃ = 7.1(1) mrad/sec (for B = 26 mG). Here, we will

examine the source of non-zero values of ωÑ ẼP̃R̃ and ωÑ ẼB̃P̃R̃. Note that we compute the

EDM from ωÑ Ẽ only, so that an offset in any other channel cannot be a true systematic

error (unless it “leaks” through to produce an offset in ωÑ Ẽ).

In ACME I, offsets in ωÑ ẼP̃R̃ and ωÑ ẼB̃P̃R̃ were understood to arise from the following

mechanisms. Suppose there is some difference between the X and Y readout laser beams.

For example, suppose there is a pointing misalignment θXY between the X and Y laser

beams, along the x-axis. Then, due to the large molecular velocity vx ≈ 200 m/s, there will

be a differential Doppler shift ∆XY = θXY vx
λ , where λ = 703 nm is the readout transition

wavelength. Since the molecular fluorescence F depends on the laser detuning due to

incomplete saturation, this will produce an Ñ Ẽ-correlated asymmetry[129, Sec. 5.3]

AÑ Ẽ =
1

F

∂2F

∂∆2
∆XY ∆Ñ Ẽ , (4.35)

where ∆Ñ Ẽ = DEnr ∼ 2π × 5 kHz arises from a non-reversing component of the electric

field. Analogous asymmetry effects can occur if the X and Y lasers have different powers.

These asymmetry effects are distinguished from physical molecular phases by the fact
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Figure 4.10: Data used to compute “leakage” of a large asymmetry effect, ωÑ Ẽsign(C), into
ωÑ Ẽ . Taken from Runs 125 and 138, where a large power difference between the X and
Y laser beams was deliberately imposed to generate asymmetry effects. Due to the P̃
switch, ωÑ ẼR̃×sign(C)P̃R̃ is independent of the asymmetry channel ωÑ Ẽ×sign(C). (Here, the
factor of sign(C)P̃R̃ is equal to B̃ for B = 26 mG and does not depend on any switches
otherwise.) Likewise, due to the R̃ switch, ωÑ ẼP̃×sign(C)P̃R̃ is independent of the asymmetry
channel ωÑ Ẽ×sign(C). The blinded EDM channel, ωÑ Ẽ , is shown for reference and is also
independent of asymmetry effects. Error bars are omitted for clarity on all points. By
computing linear regressions of suppressed channels vs. the asymmetry effect channel,
where |ωÑ Ẽ×sign(C)| ≈ 250 mrad/sec on average (see the figure x-axis), we can limit the
suppression factor from the P̃ switch to at least 30, and the suppression fator from the R̃
switch to at least 13. Thus the overall suppression of asymmetry effects from both switches
combined is at least a factor of ∼ 400.
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that, at leading order, they do not affect the measured contrast. In particular,

AÑ Ẽ ≈ 2|C|φÑ Ẽsign(C). (4.36)

When φB̃ ≈ π
4 (e.g., when B = 26 mG), sign(C) = B̃P̃R̃. On the other hand, when

φB̃ ≈ 0 (e.g., when B = 0.7, 1.3, or 2.6 mG), sign(C) = P̃R̃. Therefore, an offset in AÑ Ẽ

appears in the frequency channel ωÑ ẼB̃P̃R̃ or ωÑ ẼP̃R̃, depending on the magnitude of the

magnetic field.

In ACME I, the asymmetry channels ωÑ ẼB̃P̃R̃ and ωÑ ẼP̃R̃ were consistent with zero

throughout the EDM data set. In ACME II, due to the increased sensitivity, comparable

asymmetry effects generate measurable offsets in

ωÑ Ẽsign(C) = {6.5σ0.7, 6.8σ1.3, 2.8σ2.6, 5.5σ26} (4.37)

for B = {0.7, 1.3, 2.6, 26} mG, respectively, where σ represents the statistical uncertainty

in the frequency channel for each magnetic field magnitude, respectively.

We can make an order-of-magnitude estimate of the pointing misalignment asymmetry

effect in ACME II. For a pointing misalignment of ∼ 200µrad (limited by the ability to

overlap the X and Y lasers on a beam profiler before and after the interaction region; see

[147, Sec. 5.4.5]), the differential Doppler shift is ∆XY ∼ 2π × 10 kHz. For a gaussian

readout transition lineshape with 1σ ∼ 2π×3 MHz, ∂2F
∂∆2 ≈ − 1

σ2 , we find AÑ Ẽ ∼ −3×10−6,

which (for precession time τ = 1 ms) leads to ωÑ ẼsignC ∼ 1 mrad/sec. This is on the same

order as (in fact, a factor of a few smaller than) the observed asymmetry channels, and

larger than the statistical uncertainty of the EDM measurement.

The offsets in the “asymmetry” channels could leak through to the EDM channel only

if the suppression from the P̃ and R̃ switches is far weaker than expected. To verify

that the P̃ and R̃ switches suppress asymmetry effects as expected, we use data in which

a deliberate power imbalance between the X and Y beams induces a large asymmetry

effect (ωÑ ẼP̃R̃ ∼ 300 mrad/sec). See Fig. 4.10. Casual inspection suggests that the

asymmetry effect does not “leak” through to ωÑ ẼP̃(B̃) or ωÑ ẼR̃(B̃), let alone the doubly-
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protected ωÑ Ẽ channel. By computing linear regressions of ωÑ ẼP̃(B̃) and ωÑ ẼR̃(B̃) vs. the

asymmetry channel ωÑ ẼP̃R̃(B̃), we can set bounds on the suppression factor AP̃(R̃)of each

switch: ωÑ ẼP̃R̃s̃(B̃) = As × ωÑ ẼP̃R̃(B̃), where s = P̃ or R̃. In particular, we find bounds

AP > 30 and AR > 13. Thus the combined suppression factor is AP × AR > 390 and

any possible leakage of the asymmetry effects into the EDM channel will be far below

the statistical sensitivity. Note that these bounds are limited by the sensitivity of this

measurement; we expect both AP and AR to significantly exceed these bounds.

Because we have a good model for asymmetry effects and do not expect them to shift the

EDM, and we have confirmed that any possible leakage from “asymmetry effect” channels

ωÑ ẼP̃R̃ and ωÑ ẼB̃P̃R̃ to the EDM channel ωÑ Ẽ must be far below the statistical sensitivity

of the EDM measurement, we have not included a limit from this effect in the systematic

error budget.

4.13 Statistical uncertainty

As described in Sec. 3.5, the values of ωÑ Ẽ in the EDM data set are not normally distributed,

and the noise beyond the photon shot noise limit depends on the applied magnetic field B.

We will consider the sources of the statistical uncertainty, beyond the shot-noise level, in

subsequent sections. However, the nature of these noise sources does not affect the procedure

used to calculate the statistical uncertainty of the EDM channel ωÑ Ẽ (nor, for that matter,

any systematic effects). Therefore, I describe here the last piece of the uncertainty budget

in Table 4.8: the statistical sensitivity.

Because the additional noise, beyond the level propagated from the scatter of individual

asymmetry measurements within a group (which is consistent with the level expected from

shot noise; see Sec. 3.1), depends on B, we compute the mean and uncertainty of ωÑ Ẽ

separately for each magnetic field magnitude B. As previously mentioned, the mean is de-

termined by a robust M-estimator with Huber weights, and the 1σ uncertainty is computed

from the 68.27% coverage region of the bootstrap distribution of the M-estimator mean. In

particular, 68.27% of bootstrap samples have an M-estimator mean that lies within ±1σ of

the central (ordinary mean) value of the bootstrap distribution.
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In this way, we obtain four values of ωÑ Ẽ (B) and σB, for B = 0.7, 1.3, 2.6, and 26

mG (corresponding to 0.5, 1, 2, and 19.5 mA of applied current in the magnetic field coils,

precisely). For B ≤ 2.6 mG, the resulting value of σB is ≈ 1.7 times as large as shot noise,

while for B = 26 mG, σB is ≈ 3 times as large as shot noise.

Once the sets of values for ωÑ Ẽ(B) and σB have been obtained, we take the average

over B using standard error propagation: 〈ωÑ Ẽ〉 =
∑

B σ
−2
B ωÑ Ẽ(B)/

∑

B σ
−2
B , and σstat. =

[

∑

B σ
−2
B
]−1/2

= 373µrad/sec. The resulting statistical uncertainty is slightly larger than

the total systematic uncertainty, σsyst. = 310µrad/sec.

4.14 Result

All data analysis was completed for two independent analysis routines (mine and Cristian

Panda’s) before removing the EDM blind. Two additional analysis routines, which were

finalized after removing the EDM blind, were consistent with our initial analyses. After

removing the systematic shifts (and the analysis blind) from ωÑ Ẽ , we find the contribution

due to T -violating physics,

ωÑ Ẽ
T = 〈ωÑ Ẽ〉 − dωÑ Ẽ

Enr − dωÑ Ẽ
ω−ST − dωÑ Ẽ

∆g − dωÑ Ẽ
|C| − dωÑ Ẽ

∂B

= (−510 ± 373stat. ± 310syst.)µrad/sec.
(4.38)

Converting to EDM units, de = −~ωÑ Ẽ
T

Eeff
with Eeff = 78 GV/cm[161, 162],

de = (4.3 ± 3.1stat. ± 2.6syst.) × 10−30 e · cm, (4.39)

which we interpret as de = (4.3 ± 4.0) × 10−30 e · cm by combining the statistical and

systematic uncertainties in quadrature: σde = 4.0 × 10−30 e · cm. This is improved over

the ACME I uncertainty, previously the most stringent measurement of de, by a factor of

12[129].

Following the procedure used in ACME I, we interpret this result using the Feldman-

Cousins construction[199]. This approach is one (though not the only) method that leads

to a limit reported when the measured central value 〈de〉 is sufficiently small compared to
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Figure 4.11: 90% confidence intervals in several constructions. The Feldman-Cousins con-
struction (green solid line) gives only an upper bound until x ≈ 1.63σ, after which a
central value with two-sided errorbars is reported. The folded gaussian upper bound (dot-
ted red line) has been used in previous experiments and reports a stronger upper bound
for x & 0.27σ, but a weaker upper bound otherwise. The two-sided confidence band for
a signed central value is shown shown for reference (blue dashed line). The ACME II re-
sult, |〈de〉| = 1.1σde , is shown as a vertical dot-dashed black line. The Feldman-Cousins
prescription gives a 90% confidence lower limit of 0 so that only an upper bound is reported.

the uncertainty σde , and reports a band (central value with error bars) when the central

value is sufficiently large compared to the uncertainty. A more naive approach would be to

compute a limit up to some arbitrary threshold of |〈de〉|/σde , and report the central value

with symmetric error bars otherwise. However, such a naive approach would not necessarily

have well-calibrated confidence intervals; due to the “flip-flopping” between reporting a

bound and a central value, the nominal “90%” confidence interval would not contain the

true value for 90% of repeated measurements.

We are primarily interested in the magnitude of the electron EDM, x ≡ |〈de〉|, and thus

consider the folded gaussian distribution

P (x|µ) =
1

σ
√

2π

(

exp

[

−(x− µ)2

2σ2

]

+ exp

[

−(x+ µ)2

2σ2

])

, (4.40)

where µ ≡ |de| is the true value of the EDM magnitude, and we use the EDM uncertainty

σ = σde . The goal is to construct a 90% confidence interval for µ, the true value of |de|, given

the observed (but uncertain) value of |de|. The details of the construction have been well-
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described in previous theses, [151, Appendix D] and [149, Sec. 3.6.2]. The 90% confidence

interval is shown as a function of the observed value, in units of the uncertainty, in Fig.

4.11.

Using the Feldman-Cousins construction, we find

|de| < 1.1 × 10−29 e · cm. (4.41)

This is a factor of 8.6 smaller than the ACME I result. The fact that the bound improved

by a smaller factor than the uncertainty can be understood from Fig. 4.11: in ACME I,

the central value was 〈|de|〉I = 0.5σde,I. The resulting upper bound in this case is tighter

relative to the sensitivity σde,I, compared to the case where the central value is 1.1σ from

0.

The relation de = −~ωÑ Ẽ
T

Eeff
, which we have used here, assumes that the scalar-pseudoscalar

electron-nucleon coupling vanishes, CS = 0. Assuming instead that de = 0 allows us to set

an improved bound on CS = +
ωÑ Ẽ

T
WS

, where WS = −2π × 282 kHz.9. Then the Feldman-

Cousins construction gives a 90% confidence bound,

|CS | < 7.3 × 10−10. (4.42)

4.15 Noise sources

The various sources of additional noise in the experiment cause two problems. First, su-

perblock measurements of ωÑ Ẽ are distributed with a larger standard deviation than ex-

pected from shot noise (i.e., in practice, larger than expected from propagating the uncer-

tainty assigned to each “group” within a trace), which reduces the sensitivity of ACME II

to de. Second, the distribution of ωÑ Ẽ is not approximated well by a gaussian beyond ∼ 2

standard deviations from the mean of the distribution. We have therefore extended signifi-

cant effort to understand and, in some cases, suppress all sources of noise in the experiment

9. We calculate WS from [161, 162], but comparison to the literature values requires care because we assume
equal electron-proton and electron-neutron couplings. However, some papers assume the electron-neutron
coupling vanishes. See [129, Appendix A.2] for useful discussion.
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that exceed the shot-noise level.

4.15.1 Noise within pulses

The signature of noise depends on whether it occurs on timescales faster than or slower

than the duration of a single molecular pulse in the detection region, which lasts ∼ 1 ms.

If the noise occurs on faster timescales than this, then group-to-group uncertainties will be

underestimated. We can assess this by examining a “clean” channel, such as ωÑ Ẽ , which is

computed from data collected over much longer timescales than the noise (∼ 1 minute). A

measure of the excess noise among groups is χ2
red[groups] ≡ 1

n−1

∑n
j=1(xj − x̄)2/σ2

j , where

σj is the uncertainty of some quantity (e.g., ωÑ Ẽ) assigned to group j, xj is the estimated

value of the same quantity, x̄ is the weighted mean of the set of values, and n is the number

of groups used. For {xj} normally distributed with correctly assigned uncertainties {σj},

χ2
red[groups] = 1 on average. When the uncertainties are underestimated, χ2

red > 1 on

average. In the EDM data set, χ2
red[groups] ≈ 1.4. This result does not depend significantly

on B, or on whether the reduced chi-square statistic is evaluated for groups in a block or

groups in a superblock. Thus the error bar is inflated by
√

χ2
red[blocks] ∼ 20% due to the

additional noise, beyond the group-level assigned uncertainty (consistent with shot noise),

that occurs on ∼ kHz or faster time scales. In earlier data sets without rotational cooling,

we observed χ2
red[blocks] consistent with 1, which is consistent with the small excess noise

observed at the higher statistical sensitivity (i.e., provided the shot noise is sufficiently large,

it dominates the uncertainty of the measurement). As we will see, the additional ∼ 20%

uncertainty is not the dominant noise source beyond the ACME II group-assigned noise

level.

Although we did not eliminate all noise sources causing χ2
red[groups] 6= 1, we were able to

eliminate several noise sources. The first was a simple data analysis artifact that actually

causes χ2
red[blocks] < 1, meaning the uncertainty in group-level asymmetries was over-

estimated. In particular, following the procedure of ACME I, we originally computed the

asymmetry of a group from “individual” asymmetries by a sample mean, Aj =
∑n
i=1 Aji/n,

where Aj is the value of the j-th grouped asymmetry, and Aji is the i-th “individual” asym-

metry (computed from a single polarization switching cycle) within the j-th group. Here,
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n is the number of polarization switching cycles included in each group. The uncertainty

in the group, σAj , was computed from the sample standard deviation of values within the

group.

However, assigning the uncertainty to the group, σAj , from the standard deviation of

values is appropriate only if the true asymmetry values are constant within the group. In

particular, the variation in the asymmetry among polarization switching cycles within the

same group must be small compared to the statistical sensitivity of individual asymmetry

measurements. In ACME II, this assumption is false: velocity dispersion of the molecule

beam leads to a locally linear slope of phase vs. time after ablation because later arrivals, on

average, are travelling slower. Thus, for reasonable group sizes (e.g., n = 20), the standard

deviation of measurements can be dominated by a true variation in the asymmetry rather

than statistical shot noise. As a result, the uncertainty in the mean of each group would

be over-estimated. In early data runs, we initially found χ2
red[groups] ≈ 0.8 due to this

mechanism. Therefore, we assign uncertainties in ACME II from the residuals on a linear

regression of individual asymmetry values within a group. Although this is hardly a “true”

source of noise, it is important to realize that in future experiments, where the statistical

uncertainty in the asymmetry of each polarization switching cycle is even smaller, a more

complicated method of assigning group-level uncertainties may be required.

Another noise source (which is actually physical) that we observed to cause an artificially

small value of χ2
red[groups] was electronic pickup in the DAQ. We found that this originated

from the power supply leads to the magnetometers that monitor the magnetic field inside

the vacuum chamber. These leads broadcast noise at 80 kHz, which is picked up by the

cables from the PMTs to the DAQ (see Fig. 4.12). Recall that the polarization switching

frequency is ordinarily 200 kHz. Therefore, the 80 kHz voltage noise will modulate the

asymmetry on timescales of a few polarization switching cycles, but will not affect the

average asymmetry on the timescale of a group. Because the asymmetry is modulated

faster than the duration of a single group (∼ 100µs), the standard deviation of residuals

on the linear fit of individual asymmetry values is inflated relative to the shot noise. This

is essentially just another example of assigning the uncertainty to the group by assuming a

model of the individual asymmetry values (namely, linear slope) that does not match their
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Figure 4.12: Spectrogram of a trace, showing the power spectral density as a function of
frequency component (horizontal axis) and time within a trace (vertical axis). The 80 kHz
noise is a faint band of yellow toward the left of the plot (emphasized with a black arrow).
It is independent of the molecular pulse (speckled yellow in ∼ 4–6 ms band). Additional
strong components are harmonics of 200 kHz polarization switching frequency. Note that
the background signal (before and after the majority of the molecular pulse) has structure at
the polarization switching frequency and its harmonics. An inset at right shows frequency
components up to 1 MHz and more prominently displays the 80 kHz feature.
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Figure 4.13: Each line represents the fluorescence summed over all traces within a block,
as a function of the polarization cycle index in a 150µs wide region near the falling edge of
the molecular pulse. There is a consistent short-timescale spike in voltage corresponding to
a dip in the fluorescence signal, which arises from electronic pickup due to the flash lamp
discharge.

actual time structure (namely, linear slope with a modulation at 80 kHz). This mechanism

also reduced the value of χ2
red[groups] to ∼ 0.8 in early runs, before we discovered the source

of the 80 kHz broadcast noise. After discovering that the noise source was the magnetometer

cables, we implemented a protocol of turning off the magnetometers whenever we acquire

data, which eliminated the problem. This motivated the data analysis flag for anomalous

peaks in the Fourier transform of a trace.

The last source of noise within a molecular pulse that we identified and eliminated is

electronic noise broadcasted from the flash lamp discharge in the YAG ablation laser, which

is picked up by the DAQ across the room. The flash lamps rapidly discharge at 200 Hz in

order to maintain the designed thermal properties of the YAG crystal, even though we only

Q-switch the laser at 50 Hz (which triggers the laser pulse). As a result, there were initially

voltage spikes observable on the fluorescence signal, ∼ 10µs in duration and equivalent to

a photoelectron rate of ∼ 107/sec (see Fig. 4.13). This was first identified from anomalous

short-timescale noise in the measurement contrast as a function of time after ablation.
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Improving the electronic shielding around the YAG laser via a Faraday cage reduced the

electronic pickup to below an observable level.

4.15.2 Zeeman phase noise between pulses

To assess noise that occurs on time scales longer than ∼ 1 ms, we evaluate the chi-

square statistic from distinct blocks or superblocks, rather than distinct groups: χ2
red[SB] =

1
n−1

∑n
j=1(xj − x̄)2/σ2

j , where here n is the number of superblocks examined, xj is the av-

erage value of x obtained for the j-th superblock, x̄ is the weighted sample mean of x over

all superblocks, and σj is the nominal uncertainty assigned to the j-th superblock. When

not explicitly stated otherwise, going forward χ2
red refers to χ2

red[SB]. When a quantity such

as ωÑ Ẽ varies on a time scale slower than ∼ 1 ms, then χ2
red[groups] = 1 but χ2

red[SB] > 1,

because the value of ωÑ Ẽ will be approximately constant with respect to the group index

(time after ablation), but it will vary from measurement to measurement.

The reduced chi-square statistic for the EDM channel, ωÑ Ẽ , throughout the EDM data

set, depends on the magnetic field magnitude B as discussed previously. Here, we will

understand the source of this B-dependence. In investigating possible sources of noise, it

was useful to simulate EDM data under different well-controlled conditions. In particular,

to understand the B-dependence of the excess noise, I created simulations with the ability

to vary the molecular pulse shape, arrival time, average velocity, and velocity dispersion,

among many other parameters10. We discovered that including part-per-thousand trace-to-

trace average molecular velocity fluctuations in the simulations reproduced excessive χ2
red >

1 values at larger magnetic fields such as B = 26 mG. In the simplest model, we can even

understand this while neglecting velocity dispersion entirely. Then the accumulated Zeeman

phase in any state is φZeeman = −gµBB × τ = −gµBB × L
v , where L ≈ 20 cm is the length

of the precession region and v ≈ 200 m/s is the molecular forward velocity. If the standard

deviation of the forward velocity among distinct traces is σv, then the corresponding phase

10. I highly recommend writing analogous simulations to understand future ACME data. Of course,
we have to think of the right parameters to include as variables in the simulation. We’ll see that the B-
independent component of the noise arose due to variation in experimental parameters that we did not
initially realize could change in our system. For this reason, the simulations are not the silver bullet we
would wish them to be.
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Figure 4.14: Average precession time measurements for 200 blocks in Run 260, normalized
to the median value over the entire run to emphasize fractional deviations. Vertical red lines
denote blocks where the ablation laser position (“spot”) was changed. Depending on the
local properties of the ablation target, the precession time will vary by ∼ 1 − 10% between
blocks when the ablation spot is not moved, and in some cases (not shown) changes up to
∼ 20% when the ablation spot is moved.

noise is σφ ≈ |g|µBBL
v
σv
v = |φZeeman|σv

v . With B = 26 mG, |φZeeman| ∼ 1 rad. In a typical

group with high signal, the uncertainty in the asymmetry is σgrp
A ∼ 10−3, so we see that

approximately part-per-thousand velocity fluctuations between traces will increase χ2
red by

a factor of order unity.

Note that σtraces
v /v ∼ 10−3, the fractional change in velocity between traces, corresponds

to σpulses
v /v ∼ 5×10−3, the fractional change in v between pulses assuming random noise, or

σpulses
v /v ∼ 4×10−5 assuming a linear drift in time. We expect that the random noise model

more closely describes the operation of the beam source on these fast time scales (∼ 0.5

seconds), though we know that the average molecular velocity produced in a single ablation

laser position can also drift over many minutes. Alternatively, σtraces
v /v∼ 10−3 corresponds

to σblocks
v /v ∼ 10−4, the fractional change in the average velocity between blocks (64 traces)

assuming random noise, or a σblocks
v /v ∼ 6% assuming a linear drift between blocks. An

example of the noise in the measurement precession time, from block to block in a typical

EDM data run, is shown in Fig. 4.14. We see that, depending on the ablation conditions,

block-to-block fractional velocity variations of ∼ 1 − 10% are typical. In light of this, I’d
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argue that it is somewhat surprising how small the trace-to-trace velocity variations must

be in order to account properly for the observed phase noise. Unfortunately, we have no

way of directly measuring the velocity aside from computing φB̃, which requires acquiring

an entire block of data.11

In summary, order-of-magnitude estimates, supported by simulated data with adjustable

velocity noise, show that fractional molecular velocity variations of ∼ 10−3 between traces

leads to χ2
red ∼ 5 at B = 26 mG. Note that the exact value of χ2

redarising from this mechanism

depends on the distribution of velocity fluctuations as well as the group-assigned uncertainty,

which varies by a factor of ∼ 1.5 among runs due to depletion of the ablation targets and

corresponding changes in the fluorescence signal. The observed value of χ2
red ≈ 8 when

B = 26 mG is thus well explained. At B = 2.6 mG, the contribution of velocity fluctuations

to the observed χ2
red ≈ 3 is negligible, so another noise source must be accountable.

4.15.3 Triggering noise between pulses

Throughout the ACME II data acquisition and analysis, we were unable to determine the

source of the excess noise at B ≤ 2.6 mG, where χ2
red ≈ 3. However, we did notice that the

noise was exacerbated (χ2
red ∼ 10) under either of two conditions: (1) the delay between the

beginning of a polarization bin and the integrated sub-bin used to compute SX or SY (see

Fig. 4.15) differs by a non-zero time, δt, between the X and Y quadratures, even when the

difference in the delay was as small as a single DAQ sample (62.5 ns); or (2) the beginning

of the integrated sub-bin lies in the middle of the sharp rise in the fluorescence signal. These

conditions only affect the noise of the dataset–not consistent offsets for any measurement

channel–and the additional noise appears in every asymmetry channel. In particular, the

EDM mean is consistent for all reasonable choices of the integration sub-bins for both X

and Y .

A full-time, dedicated investigation of the excess noise at low B-fields was pursued after

completion of the ACME II analysis, primarily by Cole Meisenhelder, Mohit Verma, and

11. We have investigated alternative ways to measure the velocity, such as creating a “notch” in the
molecular pulse by briefly turning off the STIRAP lasers. However, due to the large velocity dispersion in
the molecular beam (∼ 10%), the sensitivity of this measurement could not improve on our usual method
using Zeeman precession.
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Figure 4.15: Polarization switching cycle from an example block (260.7.0). The total signals
SX and SY for an entire block are shown as a function of time within the polarization
switching cycle. The region highlighted red is used to compute SX and the region highlighted
blue is used to compute SY in the EDM data set. For reference, the dashed line shows the
total background signal integrated over a 1 ms duration (approximately the duration of the
high-signal region of the molecular pulse).

Cristian Panda. A full explanation for the mechanism has recently been achieved; details

of the measurements performed will be found in Cris Panda’s thesis (in preparation at the

time of this writing). For completeness, I also describe the basic principle here.

We can begin to understand this behavior by observing the asymmetry as a function of

time within a sub-bin, and as a function of the relative offset between X and Y bins: see

Fig. 4.16. There, we compute the time-dependent asymmetry

A(t, δt) =
SX(t) − SY (t+ δt)

SX(t) − SY (t+ δt)
(4.43)

for all values of t within a single polarization switching cycle. Here, the reference fluorescence

signal is averaged over an entire run to suppress the effect of shot noise, which is not of

interest in the current discussion. We see that, when δt = 0, the asymmetry is approximately

independent of time within the bulk of the fluorescence region. However, near the turn-

on and turn-off points of the excitation laser (≈ 0.2µs and ≈ 2.1µs in Fig. 4.16), the

asymmetry is a strong function of time within the polarization bin. This must be the case to
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Figure 4.16: Reference fluorescence signal (dot-dashed green curve) and asymmetry as a
function of time within a polarization switching cycle (solid black curve), when the X and
Y bins are approximately aligned (δt = 0). When the X and Y curves are misaligned
by a fraction of a DAQ sample (δt = 12.5 ns), the asymmetry displays a much stronger
dependence on time within the polarization bin (dashed red curve).

some extent because the background region has a different asymmetry value (dominated by

stray light and electronic offsets in the PMT signal) than the high-signal region (dominated

by the molecular phase).

However, we also see that this effect is exacerbated if the X and Y signals are computed

with a relative time offset, δt 6= 0. We can understand the origin of the dependence of

the asymmetry on the relative X and Y bin offset, ∂A
∂(δt) , as follows. Suppose, in the

simplest case, that SY (t) = SX(t) so that the asymmetry is A(t) = 0 for all t. Then

SY (t+ δt) ≈ SX(t) +S′
X(t)δt for sufficiently small δt, and hence A(t, δt) ≈ − S′

X
2SX

δt. We see

that the asymmetry in this case is proportional to the local slope of the fluorescence signal,

S′
X(t), and to the misalignment δt between the X and Y bins. Note that in Fig. 4.16, the

difference between the red and black curves, ∂A
∂(δt)δt, is proportional to the local slope of the

fluorescence signal (green curve).

We are nearly ready to consider the calculated asymmetry used to compute the EDM,

which is obtained from integrating SX and SY over sub-bins. In order to obtain the highest

SNR possible, we typically integrate the signal over a region that begins to display a non-
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Figure 4.17: A reference fluorescence signal (solid green) and a signal with a global timing
offset (dot-dashed red), ∆t = 62.5 ns. The X signal is integrated from t1 to t2, denoted
by dotted vertical lines. The Y signal is integrated from t1 + T + δt to t2 + T + δt (also
shown with dotted vertical lines). Note that the functional form of the signal is periodic
with period T , up to a difference in amplitude in the X and Y bins due to the non-zero
asymmetry (shown here with A = 0.2, independent of time). As a result, the integrated
regions of the X and Y bins are out of phase, with a timing offset of δt = 100 ns (e.g.,
the beginning of the integration region for X occurs when the signal is below half its peak,
while the beginning of the integration region for Y begins when the signal is above half its
peak).

negligible asymmetry vs. time dependence, near the edges of the high-signal region (see

Fig. 4.15). Let the actual time delay between the X and Y bins be T ≈ 2.5µs, and

denote the signal in a bin pair by S(t). We interpret approximately the first half of S(t)

to correspond to SX(t) and the second half to correspond to SY (t). It will be necessary

to relax our simplifying assumption that A(t) = 0 from the previous discussion, in order

to fully describe the ways in which timing noise can manifest as asymmetry noise. In

particular, recall that even with δt ≈ 0 (i.e., X and Y bins are aligned with respect to each

other), the “local” asymmetry is a function of time within the polarization switching cycle

(see Fig. 4.16, black curve). Therefore, a global timing offset in the signal, ∆t, leads to

a change in the average measured asymmetry, due to the varying value of A(t) near the

beginning and end of the sub-bin used to compute the measured asymmetry. We will see

that fluctuations in this global timing offset can lead to noise in the measured asymmetry,

through this mechanism independently of noies due to fluctuations in the relative timing,

δt, between X and Y bins.
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With these observations in mind, we will build up a model of how the measured asym-

metry depends on timing noise. Suppose that we integrate the X bin from t1 + ∆t to

t2 + ∆t and the Y bin from t1 + ∆t + T + δt to t2 + ∆t + T + δt, where ∆t is some

global offset in the signal relative to an arbitrary reference (see Fig. 4.17). Throughout

the ACME II data set, there were uncontrolled timing offsets, ∆t ≤ 100 ns, due to DAQ

triggering errors, which were understood and fixed by Cole Meisenhelder after the acquisi-

tion of the EDM data. These timing offsets randomly vary from pulse to pulse (not only

trace to trace–this is critical, as we’ll see later). We suppose that the fluorescence waveform

is periodic with period T , up to the possibility of different amplitudes in the X and Y

bins, so that S(t+ T ) ∝ S(t). The proportionality constant is found by the condition that

[S(t) −S(t+ T )]/[S(t) +S(t+ T )] = A(t) is the “local” asymmetry within the polarization

cycle. This model allows us to connect the integrated signal in the X bin,
∫ t2+∆t
t1+∆t dt S(t), to

the integrated signal in the Y bin,
∫ t2+∆t+T+δt
t1+∆t+T+δt dt S(t), and construct the asymmetry Ameas

in the usual way. In the simplest case of a constant timing offset ∆t for every pulse within

a trace, we find:

Ameas(∆t, δt) =

∫ t2+∆t
t1+∆t dt[(1 + A(t))S(t) − (1 − A(t+ δt))S(t + δt)]
∫ t2+∆t
t1+∆t dt[(1 + A(t))S(t) + (1 − A(t+ δt))S(t + δt)]

. (4.44)

Here, the prefactors 1 ± A(t) adjust the relative amplitudes of SX and SY based on the

time-dependent asymmetry A(t). Note, as a sanity check, that for a constant asymmetry A

within the sub-bin, the expected result Ameas(∆t, δt = 0) = A is obtained. It is clear that

Ameas(∆t, δt) is a rather complicated function in the general case that A(t) and S(t) are

not constant. In the actual situation applicable to ACME II data, there is a distribution

of global timing offsets, ∆t, among pulses within a trace, making the dependence of the

integrated asymmetry Ameas on the timing offsets significantly more difficult to understand.

Nevertheless, it is fairly clear that ∂Ameas
∂(∆t) 6= 0 even in the simplest case of a fixed timing

offset for the entire trace. This dependence of the computed asymmetry on an overall timing

offset arises from at least two sources: (1) the physical dependence of the asymmetry on the

time within the sub-bin, A(t); and (2) the artificial dependence of the computed asymmetry

on time within the sub-bin, ∂A
∂(δt)δt, due to a timing misalignment δt between the regions of

188



the X and Y bins used to compute the signals from each phase quadrature, SX and SY .

The latter noise source can be suppressed by careful adjustment of the sub-bins that

we integrate over–if necessary, even to timing precision greater than a single DAQ sample,

by interpolating the measured signal between samples. The former noise source can be

suppressed by choosing very wide integration sub-bins that extend reasonably far into the

regions of zero signal, where the dependence of the physical asymmetry on time is rather

small. Note, however, that due to a finite dead time between X and Y pulses in ACME II,

it is not feasible to completely eliminate the dependence of the asymmetry on time within

the sub-bin.

For typical traces and analysis parameters, I find a dependence ∂Ameas
∂(∆t) ∼ 3 × 10−6/ns.

Typically, the shot-noise limit for a single trace is σA ∼ 10−4, so the contribution to the

asymmetry uncertainty from timing jitter is comparable to shot noise provided ∆t ∼ 30

ns for a trace. Indeed, this estimate is quite close to the actual trace-to-trace timing noise

throughout ACME II arising from the DAQ triggering errors, as we will see in the following

section. By monitoring the timing of the DAQ trigger directly, we have determined that

pulse-to-pulse variations in the global timing offset of approximately ∆t ∼ 60 ns were typical

throughout the ACME II data set.

After eliminating the DAQ triggering error (thus setting ∆t to be a constant, which we

can take to be zero) and adjusting the relative timing of the X and Y bins via the AOMs

that control the probe laser light (thus setting δt = 0), Cris Panda and Cole Meisenhelder

have acquired a small EDM data set, involving superblock switches exactly as in the ACME

II data, and demonstrated a value of χ2
red consistent with 1 in the EDM channel, ωÑ Ẽ .

4.15.4 Retroactive elimination of excess noise?

Having understood the noise mechanism–namely, an asymmetry dependence ∂Ameas
∂(∆t) together

with an overall timing noise jitter ∆t that varies from pulse to pulse–it is natural to wonder

whether we can eliminate it in the ACME II systematic error and EDM data by modifying

the data analysis. While we can do so for timing jitter on the trace level, I have not found

a way to eliminate the noise arising from timing jitter on the pulse level.

In a bit more detail, we can measure the timing jitter on an individual trace and
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Figure 4.18: Distribution of trace-level timing offsets ∆t from Run 261.

correct the integration sub-bins for that jitter. Specifically, we can measure an average

fluorescence signal for the X bins, Sref(t), over some relatively large data set so that

Sref(t) has negligible contribution from photon shot noise, and compare to the actual sig-

nal measured in the X bins for a given trace, S(t). We normalize the signals such that
∫ tend
tstart

dtSref(t) =
∫ tend
tstart

dtS(t) = 1; i.e., the integrated signal from the beginning to the end

of the full bin is unity. This common normalization allows us to compare S(t) to Sref(t)

directly.

We suppose that S(t) = Sref(t + ∆t), i.e., that the signal of a given trace is offset

in time by ∆t compared to the reference. For small timing offsets, we Taylor expand

S(t) = Sref(t) + dSref(t)
dt ∆t + ǫ(t), where ǫ(t) is the residual for our model. Note that for a

well-defined (low-noise) reference signal Sref(t), the local slope dSref(t)
dt can be calculated to

high precision. I compute the value of ∆t that minimizes the sum of squares of residuals,

∂
∂(∆t)

∑

[S(t) − Sref(t) − dSref(t)
dt ∆t]2 = 0, to infer the actual timing offset of the signal S(t)

relative to Sref(t). Direct inspection of the offsets between trace-level signals S(t) and

the reference signal Sref(t) verifies that the value of ∆t assigned in this way accurately

describes the timing offset of the data. A distribution of ∆t values obtained for a run of

EDM data is shown in Fig. 4.18. Unsurprisingly, the distribution is not simply described

by a typical form (e.g., Gaussian or Lorentzian), but it is centered around ∆t ≈ 0 with

standard deviation σ∆t ≈ 10 ns.

Once the timing offset of a trace is determined with the above-described procedure, we
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can adjust the integration sub-bins accordingly for each trace. For example, suppose we

find that ∆t = tDAQ = 62.5 ns, the time of a single DAQ sample. In this case, the actual

trace is shifted to the left in a signal-vs-time plot. We should therefore integrate SX and SY

from one sample earlier than for our default sub-bins; e.g., SX ≡ ∑i2
i=i1

Si → ∑i2−1
i=i1−1 Si,

where Si is the signal on the i-th DAQ sample, i1 is the first sample typically included in

the sub-bin, and i2 is the last sample typically included in the sub-bin. For a timing offset

smaller than a DAQ sample, | ∆t
tDAQ

| < 1, we instead compute SX from a weighted sum over

samples. E.g., for ∆t > 0, we compute

SX →
i2
∑

i=i1

Si +
∆t

tDAQ
(Si1−1 − Si2). (4.45)

Except for the sub-bins adjusted in this way, the asymmetry and all subsequent data

analysis can proceed as normal. I have directly confirmed that this procedure suppresses

the effect of trace timing offsets on the calculated asymmetry, ∂A
∂(∆t) , by at least a factor of

20 (e.g., by analyzing the same trace with all data shifted by one DAQ sample).

Unfortunately, this procedure does not work at all to suppress pulse-to-pulse timing

noise. For example, the asymmetry computed in this way from a trace S(t) ≡ [Sref(t +

∆t) + Sref(t − ∆t)]/2, which has components with timing offsets in opposite directions,

differs from the asymmetry computed from a reference trace Sref(t) by a comparable amount

(∼ 3 × 10−6 ∆t/ns) as in the naive analysis where no effort is made to adjust for timing

jitter. Because in the ACME II data set we only have access to traces, summed over 25

pulses that have random and independent timing offsets, we do not appear to be able to

compensate for the timing jitter by adjusting the integration sub-bin on a trace-to-trace

basis.
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Chapter 5

Electric and magnetic fields

90% bug free!

Minecraft

In the ACME experiment, control of electric and magnetic fields is paramount for sup-

pression of systematic errors. In this chapter, I describe the generation of electric and

magnetic fields in the interaction region, as well as our measurements of these fields and

their imperfections.

5.1 Electric field measurements

In ACME II, we apply electric fields up to 140 V/cm, with a 4.5 cm separation between

the field plates, requiring voltages up to ±315 V. Due to the larger field plate separation

compared to ACME I, this exceeds the ±200 V capabilities of the previously-used power

supplies. Therefore, we use custom-built low-noise voltage supplies based on the PA89A

power op-amp, built by Jim MacArthur (Chief Engineer of the Harvard Instrument and

Design Lab). These supplies can generate ±500 V, controlled by a 20-bit “BiasDAC” (also

designed and built by MacArthur). The PA89A op-amps are powered by Acopian P01HA30

and N01HA30 regulated power supplies, which provide ±600 V. As we will see, differential

voltage offsets between the two low-noise voltage supplies contribute E L̃ ∼ 5 mV/cm, but the

effect of these non-reversing fields on the EDM measurement is suppressed by the L̃ switch,

compared to a true non-reversing electric field Enr. Directly monitoring the differential
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voltage between the field plates for a few days, we observed up to 25µV/hr drifts in the

differential voltage between the plates, which doesn’t reverse with the electric field or power

supply lead switches, corresponding to 5 (µV/cm)/hr drifts in the non-reversing electric

fields (see [200]). We view this as an upper bound on the field plate voltage drift, since the

Fluke 8846A digital multimeters used to measure the field plate voltages are specified to

drift up to 25µV/hr under the applicable conditions. The lead switch, L̃, is implemented

via a home-built high-voltage circuit based on the Pickering 101-2-A-12/6 mercury-wetted

relay; for details, see the internal ACME document [201].

We can create a map of the electric field, E(~x), between the refinement and probe

lasers, as a function of position in the interaction region, for each experimental state1. By

comparing the field measured in different experimental states, we can infer (most crucially)

the applied and non-reversing components of the electric field in the interaction region.

This is especially important because, as we have seen in Ch. 4, non-reversing electric fields

Enr in the STIRAP and probe regions are essential for several distinct systematic error

contributions. The method used to map the electric field in ACME II is nearly identical to

the method of ACME I, which has been documented in detail elsewhere [129, 146, 149]. For

clarity, I will describe the method briefly here. The microwave measurement of the electric

fields was implemented in ACME II primarily by Adam West.

The electric field measurement relies on microwave spectroscopy of the H state, which

is susceptible to large Stark shifts due to the small Ω-doublet splitting (a = 181(1) kHz,

with splitting 2a in J = 1[146, Appendix D]) and non-negligible electric dipole moment

(DJ=1 = 2π × 2.13(2) MHz/(V/cm)[127]). Therefore, microwave spectroscopy of the H

state manifold with ∼kHz resolution allows for ≈mV/cm resolution of electric fields, as we

will see. Suppose an electric field is applied, E 6= 0, and molecules are prepared in the

J = 1 manifold with angular momentum aligned at angle φ with respect to the x-axis.

We excite these molecules via microwaves addressing a well-defined-parity state H(J =

2,M = 0, P ). In the ACME apparatus, we use microwaves propagating along −x̂, from

1. As we will see, the protocol to measure the electric field intrinsically gives spatial resolution along the
x-direction. However, by repeating the measurement with the STIRAP or probe laser beams clipped, we
can also obtain crude spatial resolution along y and z.
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outside the “dump” vacuum chamber and along the molecular beam axis. To understand

the measurement scheme, consider first the simplest case, when the molecular phase is

prepared along φ = π
4 , so that an equal number of molecules are projected into the X and

Y quadratures by the readout lasers. Then an ordinary asymmetry measurement, in the

absence of microwave depletion, will yield A = SX −SY
SX +SY

= 0. However, now suppose that the

microwaves polarized along ŷ resonantly address the P = +1 state in J = 2 and drive a π

pulse, transferring all population from the Y quadrature to the J = 2 manifold. Then the

asymmetry measurement will yield A = 1, since the H(J = 1) ThO molecules only have

population remaining in the X quadrature.

This suggests the following measurement protocol. We prepare the molecules via STI-

RAP with angular momentum alignment approximately along x̂, and subsequently reproject

the state along φ = π
4 via the refinement laser. This reprojection reduces the experimental

signal by a factor of 2 but is necessary because the microwaves can only have polarization

in the yz-plane due to their propagation along −x̂. We then excite the molecules with a

pulse of microwaves with angular frequency ω = ω0 + δ, where ω0 ≈ 2π × 40 GHz is the

resonant frequency of the H(J = 1,M = ±1) ↔ H(J = 2, P̃) transition in the absence of

electric fields. Here, δ ≪ ω0 is a small detuning from the zero-field resonance.

For an applied electric field of the simple form E(Ẽ) = EẼ + Enr, the linear Stark shift

is 〈HStark〉 = DJ=1|E(Ẽ)|Ñ = DJ=1(EÑ + EnrÑ Ẽ). This expression can be generalized for

additional switches; for example, an electric field component that reverses with the power

supply lead switch contributes to a Stark shift parity component 〈HÑ ẼL̃
Stark〉 = DJ=1E L̃. We

set the combination of microwave power and pulse time such that a π pulse occurs for

δ = 〈HStark〉, and A is maximized when the microwaves are on resonance. The pulse time

is Tπ ∼ 50µs, which is a small fraction of the ∼ 1 ms precession time in the interaction

region and sets the linewidth of the microwave transition, δω ≈ 2π×1.42/Tπ ≈ 2π×28 kHz

(FWHM). We time the microwave pulse, relative to the ablation laser pulse, such that a

significant number of molecules are addressed at all positions in the ≈ 20 cm region between

the refinement and probe lasers, and subsequently continuously read out the asymmetry as

a function of arrival time after the microwave pulse. The molecules that arrive in the probe

region first are those closest to the probe when the microwaves arrive, while those that
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Figure 5.1: A map of asymmetry vs. detuning and approximate position within the inter-
action region (refinement beam at x ≈ 0, probe beam at x ≈ 20 cm). The red and yellow
band shows the dependence of the microwave resonance x.

arrive last are those farthest from the probe (i.e., toward the refinement laser). Assuming

a typical molecular velocity of v ≈ 200 m/s, we can interpret the molecular arrival time as

proportional to the x-position in the interaction region.

With this method, we can create a 2D map of the asymmetry as a function of the

detuning δ and position x within the interaction region, in each experimental state; see

Fig. 5.1. At each x-position (vertical slice of Fig. 5.1), we fit the asymmetry vs. detuning

to find the resonant frequency δres.(x) = ÑDJ=1|E(Ẽ)|(x) + δ0, up to an overall constant

offset detuning δ0. We then compute parity sums over different experimental conditions

to compute, e.g., Enr(x) = δÑ Ẽ
res. (x)/DJ=1, the non-reversing electric field as a function of

position within the interaction region. More generally, we typically compute all parity

components of E(x) with the switches Ñ , Ẽ , and L̃. A careful analysis shows that E s̃ =

δs̃res./DJ=1 for s̃ 6= Ñ Ẽ .

See Fig. 5.2 for all components as a function of position along the beam line. Several

features are worth noting: there is a significant (several mV/cm) offset in the channels

Enr, E L̃, and EÑ . The non-reversing fields Enr are expected due to patch potentials on

the electric field plates, which do not reverse with the nominal supply voltages. The lead-

switch-correlated field E L̃ is expected from the ∼ 10 mV power supply voltage offsets, which

contribute oppositely to the applied electric field in the L̃ = +1 configuration compared to

L̃ = −1. We do not have a strong model for EÑ ∼mV/cm, since the electric field should
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Figure 5.2: Switch-parity components of electric field measurements E(x) with switches
Ñ , Ẽ , and L̃. Subplot titles denote the frequency component from which the electric field
parity component is extracted (e.g., Enr is inferred from the component of the resonance
frequency ωÑ Ẽ). As expected, Enr (top-right, red) and E L̃ are non-zero. The average value
of ωnr is removed from the top-left plot to isolate EÑ Ẽ from the zero-field resonant microwave
frequency, ω0 ≈ 40 GHz. Similarly, the average reversing electric field, 〈EE〉 ≈ 80 V/cm, is
subtracted from the measured value of EE (x) for illustration of its variation along x. We
see ≈ 10 mV/cm variation in the applied electric field between the refinement and probe
regions due to bowing of the field plates. There is a small x-dependent offset in EÑ , which
is not well-understood. Data taken 2/17/18.
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not be affected at all by which Ñ state is prepared and probed by the lasers. We also

routinely perform measurements by addressing both P = ±1 states in H(J = 2), which

produce consistent results as expected.

Furthermore, the applied electric field demonstrates a clear (though small) curvature,

and varies by ∼ 10 mV/cm over the length of the interaction region. This curvature arises

physically from the “bowed” geometry of the electric field plates (see [149, Sec. 6.1]):

dFP ≈ 4.5 cm + 0.1µm × ( x
cm )2, where dFP is the separation between the east and west

field plates. For x ≈ ±10 cm, the maximal change in the applied electric field is therefore

expected to be ∼ 80 V/cm× 10 µm
4.5 cm ≈ 18 mV/cm, in reasonable agreement with the microwave

spectroscopy data. We have strong evidence that this bowing is a result of the manner in

which the electric field plates are clamped and held by their mounting structure.

We performed a microwave measurement to determine Enr approximately every two

weeks in the period in which the EDM data set was acquired. Qualitatively, the structure

of Enr(x) is consistent over time. In particular, Enr(x) always has a larger value (not

necessarily magnitude) in the center of the interaction region (near x ≈ 10 cm), and lies

in the range |Enr| / 5 mV/cm. We compute a typical value of Enr from the mean value,

across all measurements, averaged over the preparation (x ≈ 0) and probe (x ≈ 20 cm)

regions, where Enr is known to be capable of producing systematic errors. The uncertainty

is computed by adding in quadrature the statistical uncertainty of the measurement and

the difference between values in the preparation and probe regions alone, to reflect our

uncertainty about which region is most relevant to the systematic errors. The statistical

uncertainty in the measurement provides a negligible contribution. Computed in this way,

we obtain ∆Enr = −2.6(16) mV/cm.

5.1.1 Electric field gradients

Although we do not directly use any measured non-reversing electric field gradients, for

example ∂Enr/∂z, to compute systematic error contributions or uncertainties in the EDM

measurement, we periodically measure both ∂Enr/∂z and ∂Enr/∂y throughout the period of

the EDM data set, by performing microwave measurements with artificially shifted molec-

ular centers of mass. In particular, we can block either half of the STIRAP lasers (in the

197



0 2 4 6 8 10 12 14 16 18

Position (cm)

-10

-8

-6

-4

-2

0

2

4

6

8

10

E
n
r  (

m
V

/c
m

)

z=-7.5 mm

z=y=0

z=+7.5 mm

y=-7.5 mm

y=+7.5 mm

Figure 5.3: Non-reversing electric field, Enr, for molecular population under ordinary con-
ditions (black), and shifted along z (red and blue) or y (purple and green). The gradient
∂Enr/∂y is negligible, while the gradient ∂Enr/∂z is as large as -10 mV/cm2. Data from
1/8/18.

regions z > 0 or z < 0) to shift the center of mass of molecules prepared in the H state along

ẑ. Alternatively, we can block half of the probe lasers (in the regions y > 0 or y < 0) to shift

the center of mass of molecules that are detected along ŷ. Using Monte Carlo simulations

of the molecular trajectories for our experimental geometry (see Sec. 6.1.5 for details), we

estimate that the center-of-mass shifts are 〈z〉 ≈ 〈y〉 ≈ ±7.5 mm, where 〈z〉 and 〈y〉 are the

center of mass along z or y, respectively, of the molecular beam when the corresponding

half of the preparation or readout lasers is blocked. This allows us to measure gradients of

Enr across all three axes, throughout the interaction region.

We do not observe any significant change of Enr for 〈y〉 = ±7.5 mm, so that we conclude

|∂Enr/∂y| / 1 mV/cm2, a negligible value for our purposes (see Fig. 5.3). This is not

particularly surprising, given the approximate translational symmetry of the field plates:

we expect Ey ≈ 0 over the volume occupied by molecules, which would imply ∂Ey/∂z ≈

∂Ez/∂y ≈ 0 in every experimental state, and thus ∂Enr/∂y ≈ 0. Of course, this argument

is merely heuristic and does not suggest how large the (inevitably non-zero) “correction

terms” to ∂Enr/∂y should be.

On the other hand, we observe strikingly clear gradients |∂Enr/∂z| ≈ 10 mV/cm2 in the

most extreme cases, by comparing measured values of Enr under conditions with 〈z〉 = ±7.5

mm. To understand why the gradients are of this order of magnitude, we can consider a
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couple of toy models.

First, model the electric field plates as infinite parallel plate capacitors separated by

distance L = 4.5 cm. For consideration of Enr, we are free to assume both plates are held at

ground voltage, since the patch potentials generating Enr(~x) are independent of the voltage

applied to the field plates. Now suppose there is a line of deposited charge with linear

density λ deposited on one plate along the line y = 0 and z = −L/2. Using the method of

images and the standard results for the electric field from a line charge, we can find that the

resulting electric field and gradient have the relationship ∂Enr

∂z (z = 0) ≈ Enr(z = 0)/(L/5),

where I’ve assumed that we probe the electric field at y = 0.

Alternatively, consider a point charge deposited on one plate at x = y = 0 and z = −L/2.

Once again using the method of images and standard field results, we would find ∂Enr

∂z (z =

0) ≈ Enr(z = 0)/(L/6). Therefore, electric field gradients on the order of ∂Enr

∂z ∼ (3–

10) × Enr

L seem physically reasonable. Since L = 4.5 cm in ACME II, we expect to observe

∂Enr

∂z [mV/cm2] ∼ (3–10) × Enr [mV/cm]
L[cm] ∼ (1–2) × Enr[mV/cm]. In other words, by numerical

coincidence, gradients ∂Enr/∂z measured in units of mV/cm2 are expected to be comparable

to (or a factor of ∼ 2 larger than) fields Enr measured in mV/cm, just as observed.

5.2 Magnetic field characterization

The magnetic field control in ACME II consists of two core parts: shielding that nulls fields

from outside of the apparatus, and sets of coils that apply fields in the interaction region

volume. We will consider each of these parts in turn.

5.2.1 Ambient magnetic field reduction

The magnetic shielding consists of five layers of mu-metal magnetic shielding, in a cylindrical

geometry. Each cylinder is divided into four pieces, consisting of two flat “endcaps” and two

open half-cylinders that partially nest within each other. Holes are cut out of the mu-metal

where lasers or light pipes for fluorescence collection must pass between the interaction

region and the outside of the interaction region chamber. The cylinders span lengths from

34”–52” (inner to outer), and diameters from 30”–34”. The mu-metal shielding is identical
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to that used in ACME I, aside from some slight modifications to the holes required for light

pipes and the addition of holes that allow laser beams to propagate vertically through the

interaction region for STIRAP. Details of the mu-metal shielding design can be found in

[144, Sec. 5.4]. Emil Kirilov has measured the attenuation of external fields to be ∼ 105.

In other words, external fields of order 1 G are attenuated to ∼ 10µG inside the mu-metal

shields. As we will see, we are limited to significantly larger ambient magnetic fields than

this due to “stuck” magnetic domains in the innermost layer of the mu-metal shield, rather

than leakage of the external field through the five layers of mu-metal.

In addition to the mu-metal shielding, in ACME II we installed room-scale passive mag-

netic field cancellation coils to null the external field in the vicinity of the interaction region,

which significantly relaxes the performance requirements of the mu-metal shielding. We re-

fer to these as the “room coils.” Although the room coils are not necessary at the ACME II

sensitivity, we treat the implementation of this system as a proof-of-principle demonstration

that we can use some combination of external coils and mu-metal to suppress external fields,

rather than rely on mu-metal alone. In particular, in a future EDM measurement, we may

determine that it is technically preferable to use only three or four layers of mu-metal, in

which case nulling the fields external to the mu-metal would be more critical. This project

was developed by Zack Soule and Aaron Markowitz, undergraduates who worked for a short

time in the group, with significant assistance from Elizabeth Petrik West and Adam West.

A summary of the design and results are available in the internal ACME document [202].

Briefly, using six magnetic field coils spanning approximately the ceiling, floor, and each

wall of the laboratory, with ∼ 100 − 1000 amp-turns each, we can null the magnetic field

in the center of the lab to ∼ 1 mG, significantly smaller than earth’s field. Unfortunately,

the region of interest is ∼ 1 m3, defined by the size of the outermost mu-metal shield. Over

approximately this volume, using four three-axis GMR magnetometers, the optimized field

cancellation suppresses typical magnetic field component values to |Bi| . 20 mG, about a

factor of five smaller than when the room coils are off. We confirmed that, as completely

expected, whether the room coils are on or off has no effect on the value of the EDM (though

we did not perform this check at the statistical sensitivity of the EDM measurement).
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Figure 5.4: Geometry of the degaussing ribbon cables. Arrows denote direction of current
flow. Figure by Adam West.

5.2.2 Degaussing

Because mu-metal is a ferromagnetic material, it is critical to ensure that the magnetization

of the mu-metal does not create a large magnetic field inside the interaction region, negat-

ing its shielding functionality. The standard solution to this problem is to “degauss” the

magnetic shields by driving an oscillating magnetic field through them such that the mag-

netization follows the magnetic field along a hysteresis loop. As the strength of the applied

magnetic field is slowly ramped down, the corresponding magnetization likewise decreases.

The degaussing setup in ACME II was designed by Brendon O’Leary, and implemented by

myself and Adam West.

Geometry

For the degaussing geometry, see Fig. 5.4. In detail, each hemicylindrical mu-metal shield

is wrapped with a pair of connected ribbon cables to supply a degaussing field. Each

hemicylinder has two Molex Mini Fit Jr. connectors, corresponding to IN and OUT signals.

IN connects to one wire of a ribbon cable, which then wraps around the shield. The ribbon

wraps around two full times, and is then connected back to itself such that the IN wire

makes electrical contact with the wire adjacent to it. This geometry repeats so that each

wire connects to its succeeding wire after two loops around the shield. Every ribbon cable

has 25 wires, so each ribbon accounts for 50 windings.
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The last wire in this ribbon then connects to a second ribbon wrapped around the shield

hemicylinder in the same configuration, but offset in the x-direction. There are thus 100

windings around each shield hemicylinder. The last wire from the second ribbon on a given

hemicylinder connects to the first wire on the first ribbon of the opposing hemicylinder.

The configuration of the second hemicylinder is identical, again with 100 total windings.

All 200 windings reinforce the magnetic field driven inside the mu-metal, which circulates

around the magnetic shields along ±x̂ (in the hemicylinders) or ±ẑ (in the endcaps).

Adjacent wires within each ribbon cable were initially connected using a standard ribbon

connector, but before the EDM data set we found that a connector on the second-innermost

shield had broken due to being squeezed between adjacent shields. As a result, we replaced

all connectors with solder joints. This has the potential disadvantage of not allowing us

to simply remove the cables from the shields while they’re assembled, but under normal

circumstances doing so is not necessary. Distinct ribbon cables are connected using Molex

Mini Fit Jr. connectors.

We designate the innermost shield as “shield 1,” and the outermost shield as “shield

5.” The handedness of the circulating current reverses from one shield to the next. This

ensures, for example, that the magnetic field produced inside shield 2 has contributions in

the same direction from the current flowing through the degaussing wires around shields 1,

2, and 3.

Degaussing pulse

Since the hemicylinders are of unequal diameter, the resulting resistance and inductance of

the degaussing coils increase from inside to outside. As a result, the same voltage or current

inputs will not magnetize each shield to exactly the same degree. In addition, referring to

the known resistance and inductance for each coil is useful for trouble-shooting the assembly

and electrical connections of the degaussing system. The coils have resistances in the range

103–143 Ω and inductances in the range 63–91 mH.

The degaussing waveform, shown in Fig. 5.5, typically lasts one second and consists of

100 Hz oscillations modulated by a rapidly-rising and slowly-decaying envelope function,

with a peak typically at 6.2 V. The waveform is generated by a DAQ analog output and
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Figure 5.5: A waveform used for degaussing, shown here with two-second duration, 100 Hz
oscillations, and 6.2 V maximum input to the current amplifiers.

is distributed to five separate current amplifiers. Four of these amplifiers are Kepco BOP

100-1M models, while one is the Kepco BOP 72-6M model, with maximum voltages of 100

and 72 V, and currents of 1 and 6 A, respectively. Due to the impedance of the degaussing

coils, for every supply the voltage limit is reached at corresponding currents below the

current limit. Since the outer-most shield is the least important for the experiment, we

degauss it with the lowest-voltage supply, namely the BOP 72-6M. These current amplifiers

generate 100 mA/V input. The current output is therefore typically 620 mA, contributing

a maximum of 124 amp-turns of degaussing current to each shield.2

These currents are fed into a relay array designed by Brendon O’Leary, which allows us

to completely disconnect the degaussing cables from the current supplies when no current

should be applied. In normal operation, we open and close all relays simultaneously. The

relay outputs are filtered by a bandpass circuit, which passes frequency components in

the range of approximately 10–1300 Hz (with exact values depending on the specific coil

impedance), to suppress DC currents in the degaussing coils and high-frequency noise from

2. To the best of my knowledge, the number of windings in the ACME I degaussing geometry is not clearly
documented, but I believe it only consisted of a single loop of a ribbon cable, or 25 turns. With the typical
degaussing current of ≈ 1 A, this corresponds to only 25 amp-turns, while the “hard degauss” used after the
conclusion of the ACME I EDM data set, to remove an ambient By magnetic field, only contributed ≈ 2.5
A, for a total of ≈ 60 amp-turns.
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the relay switching.

During initial tests of the degaussing system, we found that the ambient magnetization

in the interaction region was consistently increased to Bz ∼ 100µG by the application

of a 26 mG uniform magnetic field along ẑ, and reduced by the degaussing pulse just

described to Bz < 40µG. The efficacy of the degaussing was quite insensitive to the number

of degaussing pulses sequentially applied, the direction of the applied magnetic field, and

the current amplitude of the degaussing pulse within a reasonable range. In particular,

degaussing has no observable effect with peak degaussing currents below 1 mA, and reduces

fields to a consistent level below 40 µG, provided the peak current exceeds 20 mA. The 620

mA currents typically used greatly exceed this threshold. Degaussing is always performed

in the absence of any applied magnetic fields.

We also explored what effect the shape of the degaussing pulse has on the degaussing

efficacy. There was no clear dependence of the ambient field on pulse duration beyond

approximately 50 ms, corresponding to five 100 Hz current oscillations. Under normal

experimental conditions, we only degauss when the magnetic field is switched, which requires

several seconds of settling time. Therefore, we typically use a one-second-long degaussing

pulse, which far exceeds the threshold required for degaussing to be effective but is still a

relatively small fraction of the time required to perform a B̃ switch. Furthermore, we did not

observe any dependence of the ambient field on the oscillation frequency, from ≈ 50−200 Hz.

In principle, lower frequencies more efficiently permeate the mu-metal shielding (a point we

will, alas, have to return to), while higher frequencies allow for a larger number of complete

oscillations to fit within a given pulse duration. The choice of 100 Hz current oscillation

is an arbitrary compromise between these competing advantages, under the constraint of

using pulse durations that do not exceed ≈ 1 second.

5.2.3 Magnetic field measurement protocol

The sets of magnetic field coils were designed by Amar Vutha and Brendon O’Leary and are

shown in Fig. 5.6. The most important coils apply Bz, optimized for uniformity between

the refinement and probe volumes of the interaction region. All coils are made from resin-

coated copper wire connectorized with Molex Mini Fit Jr. connectors, except for the x coils
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Figure 5.6: Approximate design of magnetic field coils. Green and blue “y” coils apply
By, ∂By/∂x, ∂By/∂y, and ∂By/∂z; yellow “x” coils apply Bx and ∂Bx/∂x; orange “main”
coils apply Bz and ∂Bz/∂x. Red “side” coils create flatter profile of Bz near the refinement
and probe regions, and create ∂Bz/∂z. All coils shown only around one hemicylinder are
mirrored by symmetric coils on the opposing hemicylinder but are omitted here for clarity.
Five possible positions of magnetometers are shown, with translation and rotation possible
around the axes denoted by arrows.

(yellow in Fig. 5.6), which are ribbon cables connected with Molex Micro Fit connectors.

To calibrate the applied magnetic field, we perform “probulation.” For an overview of

this process in ACME I, see [149, Sec. 6.3]; the procedure in ACME II is essentially identical

but will be described here for completeness. We simultaneously insert Bartington MAG-03

three-axis fluxgate magnetometers into the interaction region in three locations: one along

the molecular beam path, and two vertically along ŷ, offset by 5.5 cm along −x̂ and by 8.9

cm along ±ẑ3. We refer to the magnetometer along the beam line as the “probulator” and

the magnetometers along ŷ as FGYW(E), for “fluxgate Y west (east).” Thus FGYW is at

z = +8.9 cm and FGYE is at z = −8.9 cm, where here we take the origin, x = y = z = 0,

to be the position along the molecular beam path centered between the preparation and

probe lasers.

In addition to these magnetometer locations, we can insert magnetometers into pockets

in the vacuum chamber at x = y = 0 and z ≈ ±20 cm. We refer to magnetometers in

3. The vertical magnetometers were designed with an offset along x̂ so that the horizontal magnetometers
could be brought as close as possible to the field plates in the x = 0 horizontal position.
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x [cm] y [cm] z [cm] Rotation axis Fields measured

Probulator ±12 0 0 x By, Bz
FGYW -5.5 ±7 +8.9 y Bx, Bz
FGYE -5.5 ±7 -8.0 y Bx, Bz
FGXW 0 0 +20 z Bx, By
FGXE 0 0 -20 z Bx, By

Table 5.1: Positions of all magnetometers, relative to the center of the interaction region.
The rotation axes (identical to the translation axes) of each magnetometer, and the cor-
responding components of the magnetic field that can be measured without an electronic
offset, are also indicated.

these locations as FGXW(E) in analogy to FGYW(E) because they can be translated along

a horizontal, rather than vertical, axis.4 However, the FGXW(E) magnetometers are not

used during probulation. The positions of all five possible magnetometer positions are given

in Table 5.1, and represented in Fig. 5.6.

The probulator apparatus was designed by Elizabeth Petrik West, built by Brendon

O’Leary, and implemented in ACME II primarily by Adam West. It is mounted to an

automated Velmex translation stage and scans ±12 cm along the molecular beam line.

Inside the interaction region, it is constrained to move snugly along a tube. The three

fluxgates within the probulator (each measuring the field along one cartesian direction) are

housed in a 5.4 cm long cylinder and separated from each other by 1.5 cm, with the fluxgate

that lies along the cylindrical symmetry axis in the center. The FGY magnetometers are

both mounted to a single automated Zaber translation stage above the interaction region

and scan ±7 cm vertically. All three fluxgates are also mounted on Zaber T-NM17A04-S

rotation stages, with unidirectional repeatability of 0.1◦ ≈ 2 mrad and step accuracy of

0.25◦ ≈ 4 mrad.

The fluxgates are expected to be centered on the cylindrical symmetry axis within 2

mm. Due to the non-zero clearance of the fluxgate housings in their constraining tube,

we expect that the housings can be oriented at angles up to ∼ 5 mrad away from their

nominal axes. In addition, the fluxgate axes are specified to be orthogonal only to 0.5◦ ≈ 9

4. This notation may be confusing: while the FGY magnetometers translate–sensibly enough–along ŷ, the
FGX magnetometers translate along ẑ. The “X” is supposed to suggest “horizontal.” Because all of the
internal ACME documentation uses this unfortunate naming convention, to avoid even more confusion I use
the same names throughout this chapter.
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mrad. All of these imperfections can contribute to an offset or scatter in magnetic field

measurements, as we consider at length in Sec. 5.2.6.

Each magnetometer can be rotated, via the Zaber rotation stages, around one axis. We

define F̃ = +1 to be the initial state of the magnetometers, and F̃ = −1 to be the state

with all magnetometers rotated about one of their axes by 180◦. This rotation allows us

to identify electronic offsets in the fluxgate magnetometer measurements. Using the usual

parity sum notation, the electronic offsets appear in the channel BF̃
i , where Bi(F̃) represents

the nominal magnetic field along a cartesian direction, î ∈ {x̂, ŷ, ẑ}, measured in a given F̃

state. For example, the probulator is rotated about the x-axis, and therefore the electronic

offsets in By and Bz can be distinguished from physical magnetic fields. Note that, in this

case, the electronic offset in the Bx magnetometer channel cannot be distinguished from

physical fields. For a list of the offset-free magnetic fields that can be measured in each

magnetometer position, refer to Table 5.1.

Furthermore, we distinguish applied and ambient fields via the application of a nominal

field along opposite directions, B̃ = ±1. In this chapter only, we do not only consider the

B̃ switch to denote the orientation of the field along ẑ, but instead define B̃ to denote the

direction of current applied to any magnetic field coils of interest. For example, we calibrate

the “y” magnetic field coils by applying ~B(B̃) = ±|By|B̃ŷ.

More concretely, we decompose each field component into its parity components sepa-

rately for each axis: Bi = Bnr
i + B̃BB̃

i + F̃BF̃
i + B̃F̃BB̃F̃

i . Broadly speaking, we interpret these

four components as follows:

• Bnr
i is the magnetic field recorded by a fluxgate channel that does not reverse with

rotation or the applied field direction. This is dominated by an electronic offset.

• BB̃
i is the magnetic field recorded by a fluxgate channel that reverses with the applied

field direction but not a nominal rotation. This is usually dominated by imperfections

in the applied rotation but could also have contributions from magnetic field gradients

that couple to translation of the fluxgate as the fluxgate housing rotates. In other

words, only systematic errors appear in this channel.

• BF̃
i is the magnetic field recorded by a fluxgate channel that reverses with rotation
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but not a nominal applied field. This is dominated by the ambient magnetic field in

the interaction region caused by, e.g., magnetization of the mu-metal shields.

• BB̃F̃
i is the magnetic field recorded by a fluxgate channel that reverses with rotation

and with a nominal applied field. This is dominated by the applied field.

For the fluxgate channel along the cylindrical symmetry axis of a magnetometer, the com-

ponents Bnr
i and BF̃

i cannot be disentangled, and likewise for BB̃
i , BB̃F̃

i , since the fluxgate

rotation should have no physical effect on the field measured along the rotation axis. A

detailed model of the result of imperfections on these parity components is given in Sec.

5.2.6.

In practice, we often rotate the fluxgate magnetometers by 90◦ instead of 180◦. Although

the extra orientation states are not necessary to extract any quantities of interest, this

affords us the ability to cross-check results obtained via distinct fluxgates in each three-axis

magnetometer. For example, the fluxgate in the probulator that is oriented along +ẑ in

an initial state becomes oriented along −ŷ when the device is rotated about x̂ by 90◦, and

can thus measure both Bz and By. We find that the two redundant measurements of the

applied and ambient fields along each cartesian direction consistently agree, as expected.5

Therefore, we report values averaged over the two redundant fluxgates in these cases.

By repeating measurements in both B̃ = ±1 and all rotation states independently at

many spatial positions (x ∈ [−12, +12] cm for the probulator and y ∈ [−7, +7] cm for the

FGY magnetometers), we can map out the magnetic field over the regions of greatest interest

in the interaction region. It would be excessive to examine here every parity component,

axis, magnetometer location, and field configuration, but I will point out the most essential

results.

5.2.4 Applied magnetic fields

Consider first the applied magnetic fields, which appear in the BF̃B̃ or BB̃ parity channels.

The magnetic field measured by the probulator along the molecular beam axis, when a

5. When magnetic field gradients are applied, the distance between the fluxgates needs to be accounted
for carefully, however.
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Figure 5.7: Applied magnetic field Bz, measured by probulator in all three axes. Red and
black curves correspond to distinct fluxgates (or simply distinct sets of rotation states, 0◦

and 180◦ vs. 90◦ and 270◦, in the case of Bx). Solid and dashed correspond to separate sets
of measurements, which agree to excellent precision.

nominal Bz is applied, is shown in Fig. 5.7. The ratio of current through the “side” and

“main” coils, Iside/Imain = 5.2, is optimized for maximum uniformity of the field component

of interest, Bz. The relatively large offset component measured along By is consistent with

the degree of non-orthogonality between fluxgate axes, as we will see in more detail in Sec.

5.2.6.

As an example of another magnetic field coil configuration that produces a less optimal

field, consider the effect of an applied ∂By/∂y as measured by FGYW, which translates

along the y-axis, shown in Fig. 5.8. Here, there are significant structure and offset fields

along Bx and Bz, in addition to the desired applied gradient, ∂By/∂y. Note that this

gradient can be measured to high precision by translating the magnetometer, despite the

electronic offset in the ŷ-aligned fluxgate, which cannot be removed by rotation.

The applied magnetic fields and gradients arising from each nominal magnetic field coil

configuration, per unit of applied current through the coils, is given in Table 5.2.
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Figure 5.8: Applied magnetic field ∂By/∂y, measured by the vertical magnetometer FGYW.
Due to the significant spatial dependence arising from these coils, cubic fits are shown
(green).

Coil configuration Field (gradient) [µG(/cm)/mA]

Bz 1337
∂Bz/∂z 16.1
∂Bz/∂y 7.5

Bx 714
By 258

∂By/∂y 14.1
∂Bx/∂x 33.7
∂By/∂x 14.7
∂Bz/∂x 12.4

Table 5.2: Primary applied magnetic fields or gradients in each of nine nominal applied
magnetic field configurations. Due to Maxwell’s equations, the ∂By/∂y coils also apply
∂Bz/∂z = −8.5 (µG/cm)/mA, which we sometimes exploit when performing applied ∂Bz/∂z
systematic checks. All constant field configurations are measured using the probulator with
large applied currents. (The applied field in Bx dominates the electronic offset, which
cannot be removed by rotation of the probulator fluxgate in the calibration of the Bx
coils.) Gradients along x are measured via translation of the probulator, and gradients
along y are measured by averaging the gradients measured via translation of FGYW and
FGYE. Gradients along z are measured by comparing the field measured in FGYW and
FGYE and assuming a constant gradient over their 17.8 cm separation. Full magnetic field
configurations can be found in the Data\B-fields\Probulation Data folder of the “ACME
Storage” hard drive.
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5.2.5 Ambient magnetic fields

The ambient magnetic fields, BF̃ (for axes affected by rotation) or Bnr (for axes unaffected

by rotation), which appear in the ordinary EDM experiment as non-reversing magnetic field

components Bnr
i , are of equal concern to us as the applied magnetic fields summarized in

Table 5.2. Most especially, ambient magnetic field gradients, ∂Bnr
z /∂z and ∂Bnr

z /∂y, can

contribute to systematic errors as described in Sec. 4.10.

When we performed probulation prior to beginning our campaign to identify systematic

errors in the experiment, ambient fields in the apparatus were consistently below ≈ 50µG

in all channels and locations (probulator, FGYW, and FGYE). Unfortunately, we later

realized that the ambient magnetization of the inner mu-metal shields changed dramatically

some time between January and November 2017, when we observed ambient magnetic

fields as large as ∼ 300µG, as measured by FGYW(E) and FGXW(E). At this point, we

had been regularly taking systematic error data and were unwilling to open the vacuum

chamber to atmosphere as is required for inserting the probulation magnetometer. That the

ambient magnetic fields could change so significantly was quite surprising and we undertook

significant effort to reduce them back to the levels that were observed prior to taking any

systematic error data.6

Several problems became apparent. First, we quickly discovered that a connector for

the degaussing coils on shield 2 (second-innermost) had become disconnected, due to being

squeezed between the second and third shield layers. Fixing this connector had no effect on

the ambient fields, however.

We then attempted alternate methods of degaussing, partly inspired by the discovery

in ACME I of an ambient magnetic field By that could only be removed by applying larger-

than-typical degaussing currents. In particular, we performed longer-timescale degaussing

(up to ten minutes), and degaussing with higher currents via a variable transformer (i.e., a

Variac), as well as different deguassing sequences among the shields (e.g., 5-4-3-2-1-2-3-4-5

rather than degaussing all five shields simultaneously), all with no effect.

6. This was an all-hands-on-deck effort. Thanks to Cristian Panda, Xing Wu, Jonathan Haefner, Daniel
Ang, and Cole Meisenhelder for their role in these investigations, and especially in disassembling and re-
assembling the shields too many times to count.
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We then undertook a thorough search for magnetic materials in the interaction region

and discovered two culprits that had escaped our attention when assembling the magnetic

shields. First, the ribbon cable connectors had become magnetized up to ∼mG levels.7

Second, we discovered that the mechanical supports for the magnetic shield hemicylinders

(inherited from ACME I) used screws made from stainless steel rather than a non-magnetic

material like brass. We replaced the offending screws with brass, and replaced the ribbon

connectors with solder joints and non-magnetic Molex connectors. Unfortunately, these

precautions did not significantly reduce the ambient magnetic fields.

By reassembling the magnetic shields with one or several shields removed, we determined

by process of elimination that the ambient field originates from the innermost shield. We

also installed ribbon cables around the endcaps of shield 1 in order to degauss them, under

the hypothesis that the degaussing cables around the hemicylinders were not effective at

degaussing the endcaps. This had no effect.

We are indebted to Blayne Heckel for useful discussions in which he suggested much

lower-frequency degaussing than our usual 100 Hz waveform. We can understand this

suggestion based on the skin depth δ of the magnetic field that we wish to drive through

the mu-metal, which is merely δ ∼ 200µm/
√

ω/(2π × 100 Hz) [203]. This is a factor of ≈ 8

smaller than the thickness of each shield layer (1/16”). Therefore, it is somewhat surprising

that a 100 Hz degaussing waveform can effectively degauss the mu-metal shields at all.

Degaussing, instead, with 5 Hz oscillations (for which the skin depth is ∼ 1 mm) for a

duration of ten minutes, we reduced the ambient magnetization to at most ≈ 150µG, still

significantly larger than the ambient fields observed prior to taking any systematic error

data. Unfortunately, we were unable to reduce the ambient magnetic fields throughout the

interaction region any further than this.

Prior to taking the EDM data set, we measured the magnetic field gradients ∂Bz/∂z and

∂Bz/∂y using the in situ FGYW and FGYE magnetometers. By applying compensating

gradients (in particular, ∂Bz/∂z ≈ 4µG/cm) using the magnetic field coils, we were able

7. This oversight was due to an inadequate protocol to screen magnetic materials: we always wave a
material in front of a fluxgate magnetometer prior to inserting it into the interaction region, to make sure it is
not magnetized. However, it is necessary to first attempt to magnetize the material with a strong permanent
magnet. This initial step ensures that the material is non-magnetic, rather than simply unmagnetized.
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to suppress both gradients of interest to at most 1 µG/cm, as measured on the fluxgate

magnetometers. (We will consider the uncertainty on this value shortly.) These compensat-

ing fields were not adjusted at all throughout the EDM data set. The magnetic fields were

re-measured using fluxgate magnetometers FGYW(E) and FGXW(E) twice daily during

the period in which the EDM data set was acquired.

A more precise measurement of the magnetic fields that act upon the ThO molecules is

obtained by probulation, since the magnetometer can translate exactly along the molecular

beam axis. Of course, the initial probulation data could not be relied upon to indicate the

magnetic field during the EDM data set, since the ambient fields had clearly become much

larger in the interim, so we planned to acquire another probulation data set once the EDM

data acquisition had been completed. Unfortunately, at approximately the time that we

opened the vacuum chamber to probulate the magnetic fields, the FGY magnetometers in

the interaction region clearly indicated a sudden change in the ambient magnetic fields.

Even though it was now impossible to measure the magnetic fields as they were during

the EDM data set, we proceeded with the post-run probulation measurement. In order to

obtain the maximum information about ambient field gradients, we took measurements with

the probulator both centered on the molecular beam axis and translated vertically by ≈0.8

cm along −ŷ. Due to the tight clearance between the probulator guide tube and the electric

field plates, we were unable to translate the probulator along ±ẑ. After completing this

measurement, we removed the probulation equipment and found that the ambient magnetic

fields were, once again, changed.

We are now confident that this change was caused by bumping the interaction region

structure with the table that the probulator equipment is mounted on. Vibrations caused

by this slight collision propagated through the interaction region structure to the shields,

randomly magnetizing certain domains in the mu-metal. These domains should be remov-

able by annealing the shields, but we are unable to do that without shipping the shields

to an outside facility. It is highly likely that the same kind of process accounts for every

discrete change in the ambient fields, including the first one known to have occurred some

time during 2017.

In order to bolster our confidence that both probulation data sets were likely good

213



-10 -5 0 5 10
-200

0

200

-42.6(6) + 6.71(12)x + 0.135(9)x2 + 9.84(108) 10-3x3

-10 -5 0 5 10
-200

-150

-100

-50

-147.8(6) + 6.76(11)x + 0.055(7)x2 - 0.031(1)x3

-10 -5 0 5 10
-200

0

200

400

32.6(8) + 10.8(2)x + 0.241(12)x2 + 4.02(152) 10-3x3

Figure 5.9: Ambient magnetic field measured by the probulator in the “vented” field con-
figuration.

proxies for the ambient magnetic fields during the EDM data set, we performed probulation

once again. We refer to the various magnetic field configurations for which probulation

data is available as “initial” (prior to the EDM data set), “vented” (immediately after the

EDM data set), and “jostled” (subsequent to completing the “vented” field measurements).

Because the ambient fields measured in the initial configuration were significantly smaller

than during run-time and both the vented and jostled configurations, we disregard it for

purposes of constructing a conservative possible range of ambient magnetic fields throughout

the EDM data set.

For an example of a probulator measurement of the ambient fields, see Fig. 5.9, which

gives measurements from the probulator in the “vented” configuration. All measurements

are qualitatively similar. Using cubic trend lines extracted from the data (which always

provide an excellent fit), I summarize the data for the FGYW, FGYE, and probulator mea-

surements in Figs. 5.10-5.11. We see that the run-time fields inferred from in situ magne-

tometers give reasonable agreement with the range of fields measured via direct probulation

of the the vented and jostled configurations. This lends some degree of confidence that the

in situ measurements are reasonably representative of the actual fields in the region of the
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Figure 5.10: Measurements of magnetic fields using FGYW and FGYE during EDM data
set (“run-time,” black), and from probulation data in vented (red) and jostled (blue) con-
figurations. All lines show cubic fits to ambient fields, which are excellent fits to the data,
to avoid excessive clutter. Measurements with FGYW (+z positions) are solid, those with
FGYE (−z positions) are dashed. Measurements of By were not recorded from FGYW and
FGYE throughout the EDM data set due to the electronic offset, which cannot be removed
via rotation of the fluxgate magnetometers. However, we obtain a run-time value of By
from the FGXW and FGXE magnetometers (∗). For purposes of the plot, we arbitrarily
set the (possibly drifting) electronic offset for By measurements so that all lines cross the
measured value of By throughout the EDM data set.
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molecular beam thoughout the EDM data set.

Ambient magnetic field gradients for the EDM data set

I now describe in detail our method of determining the ambient ∂Bz/∂z and ∂Bz/∂y gradi-

ents present throughout the EDM data set, in order to set a careful bound on the systematic

error contribution arising from magnetic field gradients.

Consider first the average value of ∂Bz/∂y. Using the FGY magnetometers scanned

over ±7 cm, during the period of the EDM data set, we measured ∂Bz/∂y ≈ 1µG/cm. We

can compare this with the value of ∂Bz/∂y obtained by several alternative methods. In

the “vented” ambient field configuration, we measured fields both along the center of the

molecular beam line and offset by ≈ 0.8 cm vertically, along −ŷ. Comparing the results for

Bz in these two sets of positions, we can infer ∂Bz/∂y ≈ 4(2)µG/cm, where the uncertainty

is the root-mean-square (rms) spread in the value of the extrapolated gradient. This result

agrees quite well with the gradient extrapolated along the vertical scan of FGY magnetome-

ters in this configuration, ∂Bz/∂y ≈ 4(2)µG/cm, where once again the uncertainty is an

r.m.s. spread in local gradient values (i.e., there is a slight curvature to the ambient field).

This reinforces that the measurements inferred from FGY are consistent with the local field

along the molecular beam axis, at least in the vented configuration.

We performed different measurements in the “jostled” configuration to further reinforce

our confidence in the measured value of ∂Bz/∂y obtained from the FGY magnetometers

during the EDM data set. From Maxwell’s equations, we know that ∂Bz/∂y = ∂By/∂z,

so that by translating the FGX magnetometers along ±ẑ and measuring By, we can in-

fer ∂Bz/∂y. The FGX magnetometers do not have associated translation stages8, so this

measurement was performed by hand, which led to much larger angular fluctuations of the

fluxgate orientation than is present for typical measurements. As a result, we were able to

determine only that ∂Bz/∂y ≈ 6(5)µG/cm, consistent with measurements inferred directly

from FGY vertical scans, ∂Bz/∂y = 5(2)µG/cm in this field configuration.

8. Our omission of translation stages for the FGX magnetometers is mainly due to space constraints on
the optics tables next to the interaction region. However, if it were a priority to use horizontal magnetometer
translation stages, then we could surely find a way to fit them in.
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Now consider the average value of ∂Bz/∂z. Based on measurements with FGY magne-

tometers throughout the EDM data set, we infer ∂Bz/∂z ≈ −0.5µG/cm. (Recall that we

apply a fixed compensating magnetic field gradient in order to achieve this low value.) In

the vented field configuration, we can use ∇ · ~B = 0 to infer ∂Bz/∂z in the region of the

molecular beam. In particular, we measure ∂Bx/∂x directly using the ordinary probulator

scan along x̂, and we infer ∂By/∂y by comparing the two sets of measurements in which the

probulator is offset along −ŷ by 0.8 cm. Then ∂Bz/∂z = −∂Bx/∂x−∂By/∂y ≈ 1(2)µG/cm.

By comparison, the value inferred by comparing Bz measured with FGYW and FGYE in

this field configuration is ∂Bz/∂z ≈ 0(2)µG/cm, consistent with the results obtained in the

region of the molecular beam.

In the “jostled” field configuration, we obtained results for ∂Bz/∂z ≈ −3.5µG/cm from

the FGY magnetometers. We can compare this to results from the scans along ±ẑ of

the FGX magnetometers to obtain a direct measurement of ∂Bz/∂z ≈ −3(2)µG/cm at

distances of |z| ≈ 20 cm from the molecular beam axis, consistent with the results from

the FGY magnetometers. However, there is another method that gives results slightly

inconsistent with this value. In particular, we can measure ∂By/∂y using vertical scans of

the FGY magnetometers (albeit offset from the molecular beam axis) and ∂Bx/∂x using the

horizontal scan of the probulator. Then ∂Bz/∂z = −∂Bx/∂x − ∂By/∂y ≈ −7(2)µG/cm,

not clearly consistent with the other measurements. The discrepancy is no larger than

≈ 4µG/cm.

With all of these cross-checks in mind, we can estimate the uncertainty in the measured

values of ∂Bz/∂y and ∂Bz/∂z that are inferred from FGY magnetometer measurements

throughout the EDM data set. In almost every case, different methods of measuring these

gradients give results consistent with those inferred from the FGY in situ magnetometers,

and in one case the discrepancy is at most 4µG/cm. We therefore conservatively assume

that the possible difference between a gradient measured via the FGY magnetometers and

the actual gradient along the molecular beam axis is at most 4µG/cm in either component,

∂Bz/∂y or ∂Bz/∂z, independently. Furthermore, in any magnetic field scan, the largest

variation in these gradients between the center of the interaction region and either the

preparation or probe regions is 6µG/cm, due to quadratic components of the magnetic
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field in some cases. We therefore take the possible variation in magnetic field gradients,

∂Bz/∂z + R∂Bz/∂y, where R ≈ 1.1 (see Sec. 4.10), to be ≈ 6µG/cm. We treat both

contributions to the uncertainty in the gradient–i.e., a discrepancy between the in situ

measurements vs. alternative methods to measure the magnetic field, and variations in

the magnetic field over the interaction region volume–as uncorrelated and so add their

contributions in quadrature,
√

2 × 42 + 62 µG/cm < 9µG/cm.

Using the central values of the magnetic field gradients measured throughout the EDM

data set, we therefore determine ∆(∂Bz/∂z + R∂Bz/∂y) = −1(9)µG/cm, with the uncer-

tainty set in approximately equal parts by the possible variation in the magnetic field gradi-

ent over the interaction region (6µG/cm) and the possible error in the FGY magnetometer

measurements (independently in each gradient component, for an overall contribution of

approximately
√

2 × 4µG/cm).

5.2.6 Model of probulation systematic errors

Here, I will document all known contributions to systematic errors in the magnetometer

measurements. The BB̃ fluxgate magnetometer channels (independent of fluxgate rotation

state F̃), which consists entirely of systematic errors, is useful in understanding various

contributions to both measurement scatter and offsets.

Rotating fluxgate channels

We will calculate the measured field in each rotation state, F̃ = ±1, for a fluxgate pointing

along unit vector ê1 when the magnetic field has components B1, B2 and B3, as well as first-

and second-order gradients. (We use arbitrary unit vectors, rather than {x̂, ŷ, ẑ}, because

the orientation of the fluxgates in the lab are not all identical.) Let the rotation axis be ê3.

We will allow the fluxgate to be misaligned by small angles φ toward ê2 and β toward ê3.

The fluxgate may be displaced by distance L from the rotation axis ê3 at an angle α with

respect to the ê1 axis in the F̃ = +1 state. Finally, a nominal 180◦ rotation may correspond

to an actual rotation of π + δ, where δ is some small angle (over- or under-shoot of 180◦

rotation). We will ignore any terms that are bound to be smaller than ∼ 1µG.

We will first consider the measured fields in one of the two fluxgate axes that are ideally
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affected by the F̃ switch, i.e., one of the “rotating” fluxgate channels. In particular, we

consider the component measured nominally along ê1 for clarity. It is easiest to build up

this model step-by-step. First, note that an ideal measurement would give

[ideal]

B(F̃ = +1) = B1

B(F̃ = −1) = −B1.

(5.1)

Now suppose that a rotation occurs with angle π+ δ such that the angle θ for a fluxgate

of interest, relative to its nominal axis, is θ(F̃ = +1) = −δ/2 and θ(F̃ = −1) = π + δ/2.

Then

[+rotation error]

B(F̃ = +1) = B1(1 − δ2

8 ) − B2
δ
2

B(F̃ = −1) = −B1(1 − δ2

8 ) − B2
δ
2 .

(5.2)

Here, I neglect terms of order Biδ3. Applied fields are typically of order 50 mG or smaller,

while small angles are of order 10 mrad, so Bδ ∼ 500µG, Bδ2 ∼ 5µG, and Bδ3 ∼ 0.05µG,

with the last term utterly negligible. For the same reasons, I will drop all terms that are

cubic in any small angle going forward.

We can now consider that a fluxgate lying primarily along ê1 actually has a small

component along ê3 due to a small rotation angle β. Then the measurement will be such that

B1,2 → B1,2(1 − β2

2 ) and an additional rotation-independent component B3β is measured.

At the relevant order, we have

[+longitudinal component]

B(F̃ = +1) = B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β

B(F̃ = −1) = −B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β.

(5.3)

We should also consider an electronic offset, which is naturally rotation-independent:
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[+electronic offset]

B(F̃ = +1) = B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β

+Boffset

B(F̃ = −1) = −B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β

+Boffset.

(5.4)

If the fluxgate is offset by L from the rotation axis in a direction that makes angle α

with respect to ê1 in the e1e2-plane, then gradients will couple to its rotation-dependent

position, x1 = F̃L cosα and x2 = F̃L sinα. The largest gradients we apply are of order

∂Bi
∂xj

∼ 5 mG/cm, while the largest displacement we expect is ∼ 2 mm. Therefore, we expect

∂Bi
∂xj

L ∼ 1 mG at most, and ∂Bi
∂xj

θ ∼ 10µG, while ∂Bi
∂xj

Lθ2 ∼ 0.1µG, with θ here denoting a

small angle (δ or α). We therefore ignore terms involving gradients that are second-order

in small angles:

[+gradients]

B(F̃ = +1) = B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β

+Boffset

+∂B1
∂x1

L cosα− δ
2
∂B2
∂x1

L cosα+ β ∂B3
∂x1

L cosα

+∂B1
∂x2

L sinα− δ
2
∂B2
∂x2

L sinα+ β ∂B3
∂x2

L sinα

B(F̃ = −1) = −B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β

+Boffset

+∂B1
∂x1

L cosα+ δ
2
∂B2
∂x1

L cosα− β ∂B3
∂x1

L cosα

+∂B1
∂x2

L sinα+ δ
2
∂B2
∂x2

L sinα− β ∂B3
∂x2

L sinα.

(5.5)

We will also consider higher-order gradients. The largest curvatures we produce are

of order ∼ 50µG/cm2, so we might expect corrections of ∼ 2µG due to field curvatures

together with ∼ 2 mm position errors. Any second-order gradients with respect to B2 or

B3, which are only measured in the presence of alignment errors, are negligble. Further,

no curvatures of the form ∂2B1
∂xi∂xj

are measured even on the 50µG/cm2 level except when
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i = j = 1. We will therefore measure

[+curvature]

B(F̃ = +1) = B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β

+Boffset

+∂B1
∂x1

L cosα− δ
2
∂B2
∂x1

L cosα+ β ∂B3
∂x1

L cosα

+∂B1
∂x2

L sinα− δ
2
∂B2
∂x2

L sinα+ β ∂B3
∂x2

L sinα

+1
2
∂2B1

∂x2
1
L2 cos2 α

B(F̃ = −1) = −B1(1 − δ2

8 − β2

2 ) − B2
δ
2 + B3β

+Boffset

+∂B1
∂x1

L cosα+ δ
2
∂B2
∂x1

L cosα− β ∂B3
∂x1

L cosα

+∂B1
∂x2

L sinα+ δ
2
∂B2
∂x2

L sinα− β ∂B3
∂x2

L sinα

−1
2
∂2B1

∂x2
1
L2 cos2 α.

(5.6)

The last correction we will make is a “global” rotation by a small angle φ, allowing for

the fact that the overall orientation of the fluxgate may be miscalibrated to lie partially

along the laboratory ê2-axis (averaged over both F̃ states). This rotation has the effect of

substituting δ
2 → δ

2 − F̃φ. Keeping only the relevant orders, we have
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[+global rotation]

B(F̃ = +1) = B1(1 − δ2

8 − β2

2 − φ2

2 + δφ
2 ) − B2( δ2 − φ) + B3β

+Boffset

+∂B1
∂x1

L cosα− ( δ2 − φ)∂B2
∂x1

L cosα+ β ∂B3
∂x1

L cosα

+∂B1
∂x2

L sinα− ( δ2 − φ)∂B2
∂x2

L sinα+ β ∂B3
∂x2

L sinα

+1
2
∂2B1

∂x2
1
L2 cos2 α

B(F̃ = −1) = −B1(1 − δ2

8 − β2

2 − φ2

2 − δφ
2 ) − B2( δ2 + φ) + B3β

+Boffset

+∂B1
∂x1

L cosα+ ( δ2 + φ)∂B2
∂x1

L cosα− β ∂B3
∂x1

L cosα

+∂B1
∂x2

L sinα+ ( δ2 + φ)∂B2
∂x2

L sinα− β ∂B3
∂x2

L sinα

−1
2
∂2B1

∂x2
1
L2 cos2 α.

(5.7)

Using this last result, we can compute the components of a measurement that are even

and odd under F̃ :

Bnr
1 ≡ [B(F̃ = +1) + B(F̃ = −1)]/2

= B1
δφ
2 − B2

δ
2 + B3β

+Boffset

+∂B1
∂x1

L cosα+ φ∂B2
∂x1

L cosα

+∂B1
∂x2

L sinα+ φ∂B2
∂x2

L sinα

BF̃
1 ≡ [B(F̃ = +1) − B(F̃ = −1)]/2

= B1(1 − δ2

8 − β2

2 − φ2

2 ) + B2φ

− δ
2
∂B2
∂x1

L cosα+ β ∂B3
∂x1

L cosα

− δ
2
∂B2
∂x2

L sinα+ β ∂B3
∂x2

L sinα

+1
2
∂2B1

∂x2
1
L2 cos2 α.

(5.8)

Any of these terms might be even or odd under B̃, and imperfections could behave as

offsets (when consistent across measurements) or scatter (when fluctuating between mea-

surements). It is important to realize that scatter is generated even in B̃-even channels by
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applied magnetic fields coupled to non-repeatable angles; however, any fixed angle offset

can only enter into the B̃-odd channel, provided the applied fields are perfectly reversing.

This has assumed that the fluxgate channel is primarily along ê1. The same model

specifies the systematic error contributions to the ê2 channel, provided the substitutions

B1 → B2, B2 → −B1, and B3 → B3 are made.9

Non-rotating fluxgate channel

We use a similar model for the longitudinal fluxgate channel, which ideally does not change

under fluxgate rotations. In particular, we will allow for small angles into the e1e2-plane,

fluxgate rotation errors, electronic offsets, and displacement from the rotation axis. As

before, it is easiest to add each complication step by step. The measured field would ideally

be

[ideal]

B(F̃ = +1) = B3

B(F̃ = −1) = B3.

(5.9)

If the fluxgate is oriented by a small angle β into the e1e2-plane, and makes an angle φ

(not necessarily small) with respect to the ê1 axis within this plane, then

[+orientation error]

B(F̃ = +1) = B3(1 − β2

2 ) + β cosφB1 + β sinφB2

B(F̃ = −1) = B3(1 − β2

2 ) − β cosφB1 − β sin φB2.

(5.10)

If there are rotation errors such that the angle in the e1e2-plane is φ → φ− δ/2 in the

F̃ = +1 state but φ → φ+ π + δ/2 in the F̃ = −1 state, corresponding to a total rotation

of π + δ, then some trigonometric identities yield

9. The negative sign appears in this mapping because the coordinate system {ê1, ê2, ê3} is assumed to be
right-handed and the ê2 axis can be put in the position of the ê1 axis by a −π/2 rotation about ê3, which
sends ê1 → −ê2.
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[+rotation error]

B(F̃ = +1) = B3(1 − β2

2 ) + β(cos φ+ δ
2 sinφ)B1 + β(sin φ− δ

2 cosφ)B2

B(F̃ = −1) = B3(1 − β2

2 ) − β(cosφ− δ
2 sinφ)B1 − β(sin φ+ δ

2 cosφ)B2.

(5.11)

An electronic offset adds to both states the same way:

[+electronic offset]

B(F̃ = +1) = B3(1 − β2

2 ) + β(cos φ+ δ
2 sinφ)B1 + β(sin φ− δ

2 cosφ)B2

+Boffset

B(F̃ = −1) = B3(1 − β2

2 ) − β(cos φ− δ
2 sinφ)B1 − β(sin φ+ δ

2 cosφ)B2

+Boffset.

(5.12)

Finally, we will allow the channel to be displaced from the rotation axis by a distance L

in a direction that makes angle α (not necessarily small) with the ê1 axis in the e1e2-plane.

This allows the following coupling to first-order gradients:

[+gradients]

B(F̃ = +1) = B3(1 − β2

2 ) + β(cos φ+ δ
2 sinφ)B1 + β(sin φ− δ

2 cosφ)B2

+Boffset

+∂B1
∂x1

β cosφL cosα+ ∂B2
∂x1

β sinφL cosα+ ∂B3
∂x1

L cosα

+∂B1
∂x2

β cosφL sinα+ ∂B2
∂x2

β sinφL sinα+ ∂B3
∂x2

L sinα

B(F̃ = −1) = B3(1 − β2

2 ) − β(cos φ− δ
2 sinφ)B1 − β(sin φ+ δ

2 cosφ)B2

+Boffset

+∂B1
∂x1

β cosφL cosα+ ∂B2
∂x1

β sinφL cosα− ∂B3
∂x1

L cosα

+∂B1
∂x2

β cosφL sinα+ ∂B2
∂x2

β sinφL sinα− ∂B3
∂x2

L sinα.

(5.13)
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No second- or higher-order gradients are significant; as discussed in the previous section,

only a curvature along the main measurement axis can be significant at the µG level, but in

the present case there is negligible translation along the measurement axis upon rotation.

We can then take the reversing and non-reversing components of the field along the fluxgate

rotation axis using the expression above:

Bnr
3 ≡ [B(F̃ = +1) + B(F̃ = −1)]/2

= B3(1 − β2

2 ) + β δ2 sinφB1 − β δ2 cosφB2

+Boffset

+∂B1
∂x1

β cosφL cosα+ ∂B2
∂x1

β sinφL cosα

+∂B1
∂x2

β cosφL sinα+ ∂B2
∂x2

β sinφL sinα

BF̃
3 ≡ [B(F̃ = +1) − B(F̃ = −1)]/2

= β cosφB1 + β sinφB2

∂B3
∂x1

L cosα+ ∂B3
∂x2

L sinα.

(5.14)

Again, these terms can generically be even or odd under B̃, and they may appear as

offsets or as scatter depending on the mechanisms involved. The components odd under

F̃ consist entirely of systematic errors. The systematic error contribution to Bnr
3 is over-

whelmingly dominated by Boffset.

5.2.7 Effect of imperfections

When applying a nominal Bz, we have Bz ∼ 45 mG, ∂Bi
∂xj

∼ 1 mG/cm for multiple gradients,

and ∂2Bz
∂z2 ∼ 10µG/cm2, which is small enough to neglect. At most, Bx(y) ∼ 500µG.

There are 10 meaningful parity terms (neglecting BF̃ and BB̃F̃ along the rotation axes)

for each magnetometer (probulator, FGYE, FGYW), giving thirty field components in all

for a given magnetic field. It is tedious and unhelpful to walk through every contribution

to each of these field components in turn. We will begin by crudely characterizing the

components, beginning with the probulator. First, suppose that the fluxgates are centered

perfectly on the rotation axis, so L → 0. This is a valid assumption because the gradients in

the molecular beam line are sufficiently small (there are larger ∂By

∂y gradients in the vicinity
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Parity xyz Offset (µG) Exp. µGpp Exp. Notes

BB̃F̃ Bx - - 50 100 Not meaningful channel
By 0 ±400 100 100
Bz 46.8 × 103 ∼ 50 × 103 1 1 Applied field channel

BF̃ Bx - - - - Not meaningful channel
By -50 ±50 100 100
Bz -25 ±50 10 1

BB̃ Bx -200 ±200 50 100
By 100 ±200 100 100
Bz 2 ±4 4 1

Bnr Bx -80 ±50 80 100 Electronic offsets
By 150 ±50 100 100 Electronic offsets
Bz 150 ±50 1 1 Electronic offsets

Table 5.3: Representative field offsets and scatter (µGpp) along the probulator scan, with a
nominal applied Bz. Offsets are expected (“Exp.”) in BB̃F̃

y up to ∼ 400µG due to fluxgate

non-orthogonality; in BB̃ up to ∼ 200µG due to specified rotation inaccuracy; in BF̃ up
to ∼ 50µG due to genuine ambient fields; and in Bnr up to 50µG due to electronic offsets
(though measured electronic offsets exceed this specification). The offset errors in BB̃F̃

z and
BB̃
z are suppressed by an additional factor of ∼ 10−2 because the effect of rotation errors

along the applied field direction is only second order in the rotation error. The largest
offset, in BB̃F̃

z , is naturally dominated by the genuine applied field. Scatter is expected in
all parity terms up to ∼ 100µG from both non-repeatability of the rotation stage and small
changes in magnetometer orientation with respect to the nominal x-axis due to moving of
the magnetometer in the probulator “guide tube”—but these are again suppressed by a
factor of ∼ 10−2 in Bz relative to By and Bz. All gradients along x (the probulator scan
axis) are negligible except ∂Bx

∂x ∼ 0.1 mG/cm, which is necessarily generated together with
a comparable ∂Bz

∂z from the applied field. These data are from the “initial” configuration,
prior to collection of systematic error data. See Fig. 5.7 for an example of probulator
measurements in this configuration.

of the FGY magnetometers) that their contributions to the measured field can be neglected.

10

The data are consistent with rotation non-repeatability and fluxgate non-orthogonality

that are well within their specified limits.

There are so many potential parameters of interest (e.g., the offset, slope, scatter, or

deviations from linearity in three field components, measured by up to two separate channels

in three magnetometers, across every applied field configuration) that it is extremely difficult

to present our results in a way that is both tractable and detailed. As a compromise, I have

10. The exception is a small gradient ∂Bx
∂x

generated by necessity due to a non-zero ∂Bz
∂z

. However, this is
too small to couple non-trivially to any imperfections.
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visually examined all plots obtained from the magnetic field scans, amounting to at least

540 traces (four meaningful parity components for each reversible lab axis and two for

the magnetometer rotation axis, measured by 3 magnetometers over 9 configurations, and

plotted separately for measurements performed with pairs of rotation states {0◦, 180◦} and

{90◦, −90◦}). In doing so, I failed to identify any outstanding anomalies. A summary of

representative values of the magnetic field offsets and scatter, which in most cases arise due

to systematic errors in the measurement, is given in Table 5.3. The systematic error model

for the probulator measurement previously discussed, which includes (most importantly)

the effects of rotation errors and non-orthogonality of the fluxgates within a single three-axis

magnetometer, accounts for the measurement offsets and scatter reasonably well. As noted

previously, a summary of the primary applied field component for each nominal magnetic

field coil configuration is given in Table 5.2.
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Chapter 6

Toward an improved measurement

Oh, uhh, the Princess. . .

. . . Princess who?

She must be in another castle.
Braid

This chapter will deal with an eclectic assortment of considerations relevant to improving

the ACME experiment even further, toward a target EDM sensitivity of 10−30 e · cm. The

next-generation version of the ACME experiment will be referred to as “ACME III.” This

will involve improved control over systematic error parameters, in particular birefringence

gradients that can lead to AC Stark shift systematics and magnetic field gradients. It will

also include improved statistics via various routes to increase the flux of useful molecules

through the interaction region and to increase the detection efficiency of molecules already

in the interaction region.

6.1 Molecular focusing with electric or magnetic fields

In buffer gas beam experiments, molecular divergences from the source are typically on

the order of ∼ 45◦ FWHM. For a detection region with transverse size on the order of

∼ 1 cm at a distance of ∼ 1 m from the source, only one in ∼ 10−4 molecules will have

the required transverse velocity to pass through the detection region. A molecular lens,

in analogy to an optical lens, focuses the diverging molecular beam as it moves into the
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detection region. This section will discuss a system for designing a molecular lens, along

with the limitations in the ideal and practical performance. In the context of the ACME

experiment, we are pursuing the possibility of either a magnetostatic lens or an electrostatic

lens, with both options likely realized using the long-lived Q electronic state of ThO. Xing

Wu has now characterized the Q state in detail and is actively considering both routes. In

this section, I will describe our approach to analyzing the gain in useful signal due to a lens.

The details of the beamline geometry and achievable electric or magnetic potential depth

are still indeterminate, and so the quantitative results here are merely representative.

6.1.1 Optical lens analogy

In a molecular lens, a molecule is subject to a potential field U(x, y, z), and the trajectory it

traces through space is affected. If we select the x-direction as the molecular beam axis (to

be consistent with the coordinates used in the ACME experiment), then we can draw an

analogy with geometric optics with an “optical axis” along x̂. We will use the Lagrangian

perspective in order to make the analogy clear. The optical Lagrangian expresses Fermat’s

principle, namely that a light ray takes the path of least time between two points:

Loptics = n(x, y, z), (6.1)

where n(x, y, z) is the index of refraction at a particular point in space. A mechanical

Lagrangian is of the form

Lmechanical =
1

2
m(v2

x + v2
y + v2

z) − U(x, y, z), (6.2)

where m is the particle mass. Consider the extreme limit of the molecular analog to the

“paraxial approximation,” vy, vz → 0, so

Lmechanical = 1
2mv

2
x − U(x, y, z)

= 1
2mv

2
0 +mv0dv + 1

2m(dv)2 − U(x, y, z),
(6.3)
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where vx ≡ v0 + dv for an initial forward velocity v0 and change in the velocity dv. We

are free to ignore the overall offset to the Lagrangian, 1
2mv

2
0 . If the largest energy scale

of the problem is U0, then the largest possible change to the forward velocity is given by

energy conservation: 1
2m(v0 + dv)2 − 1

2mv
2
0 = U0 ⇒ dv

v0
≈ U0/(mv

2
0). In other words,

the fractional change in the forward velocity is suppressed by the ratio of initial kinetic

energy to available potential energy. For a molecular lens, the available potential energy is

U0 ∼ kB×1 K, while the ThO beam in ACME has ∼ kB×600 K of kinetic energy. Therefore,

we can treat dv ≈ 0 and write Lmechanical → −U(x, y, z). We identify the effective index of

refraction of the molecular lens, neff(x, y, z) = −U(x, y, z), up to a constant. Of course the

vy, vz → 0 limit is not perfectly achieved, and corrections to the Lagrangian occur at the

order of O(θU0), where θ =
√

(v2
y + v2

z)/v
2
x is the molecular divergence angle. However, all

molecules that we are able to redirect with the ∼ 1 K depth potentials that are technically

available via Stark or Zeeman shifts have extremely small divergence angles, θ ≪ 1, at all

points in their trajectories.

In conclusion, we can replace a mechanical treatment of the molecules with an optical

treatment as long as v2
y +v2

z ≪ v2
x and U0 ≪ mv2

x. This is useful because we no longer think

in terms of time evolution, but instead parametrize trajectories by their positions along the

molecular beam axis, just as we can consider the position of a light ray along the optical

axis. Further, the phase-space of geometric optics is only four-dimensional (y, py, z, pz)

rather than six-dimensional (also including x, px) since the x coordinate takes the role of

time in an ordinary Hamiltonian. This makes the analysis significantly simpler and allows

us to build intuition for the behavior of the molecular trajectories.

6.1.2 Conservation laws

Etendue

The optical Lagrangian can be recast in terms of a Hamiltonian, which has an associated

phase-space. An analogue to Liouville’s theorem then tells us that etendue (phase-space

volume) is conserved, d
dt

∫

n2dS cos θ dΩ = 0, where dS is a differential area element (in

the yz-plane for our purposes) of a ray bundle, and dΩ is a differential solid angle element
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subtended by its outgoing rays. For a surface with total area S and divergence angles up to

half-angle α, in some region with constant index n, the total etendue is Get = πS n2 sin2 α ≈

πS n2 α2.

The conservation of Get gives one fundamental performance limit for a lens design: we

cannot focus any phase-space volume from our source that is larger than the phase-space

volume of trajectories that would pass between the input and output boundaries of the

target. One of the most important consequences of etendue conservation is that decreasing

the divergence of a bundle of rays, regardless of the method, must increase the spatial extent

and vice versa. The design of optical elements that most efficiently transform a bundle of

incident rays into the optimal bundle of outgoing rays, subject to the major constraint of

etendue conservation, is the domain of non-imaging optics[204].

It is useful to know how strongly the etendue limit constrains the gain that could be

achieved with a molecular lens. In ACME, the initial molecule distribution has cylindrical

symmetry, essentially defined by a radial velocity distribution and 3 mm radius “skimmer”

aperture that attenuates the neon gas load from the beam source into the beam line. The

phase-space volume of trajectories with transverse velocity up to v⊥ is therefore πv⊥2 ×πr2.

Without a lens, the viable velocity classes to reach the detection region are approximately

those with v⊥ ≤ 2 m/s (θ = v⊥
vx

≈ 10−2). Thus the phase-space volume of trajectories from

the source that can reach the detector, in units where1 mThO = 1, is ∼ 4 × 10−4 m2

s .

The maximum target phase-space volume is defined by trajectories that would travel

between two boundaries (in particular, the collimating aperture and the detection region).

If these boundaries are square, then the trajectories that survive are decoupled in the y and

z directions. Consider only the y-direction, for example, and we will assume for simplicity

(and a bit conservatively) that the detector area is also bounded to the same area as the

collimator, but is separated by the field plate length L. Starting from the first collimator,

at a given initial y-position of y(0) = y0, there is some minimum velocity v−(y0) that

reaches position y(L) = −dcoll/2 and some maximum velocity v+(y0) that reaches position

1. Recall that phase-space volume in one dimension has units of [momentum]×[length], but throughout
this section I use units of [velocity]×[length], which is more natural to the design on a lens for a molecule
with fixed mass.
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y(L) = +dcoll/2. Both functions v±(y0) are linear in the starting position y0 for a given

forward velocity vx and length L, so the allowed trajectories form a parallelogram in (y, vy)

phase-space at the collimator position. Two of the corners of this phase-space parallelogram,

defining the minimum velocity for a molecule starting at y0 = −dcoll/2 and the maximum

velocity for a molecule starting at y0 = +dcoll/2, are v±(±dcoll/2) = 0. The opposing corners

of the phase-space parallelogram, defining the maximum velocity for a molecule starting

at y0 = −dcoll/2 and the minimum velocity for a molecule starting at y0 = +dcoll/2, is

obtained from a diagonal trajectory passing between y(0) = ±dcoll/2 and y(L) = ∓dcoll/2

over a distance L, giving v±(∓dcoll/2) = dcoll
L vx in the small-angle approximation. The area

of this parallelogram is
d2

coll
L vx and the area of the four-dimensional phase-space volume is

(

d2
coll
L vx

)2

.

In ACME II, dcoll = 2.4 cm and L = 43 cm, while vx ≈ 180 m/s. Therefore, the maxi-

mum phase-space area (again, letting mThO = 1) that we could obtain without increasing

the collimator spacing is ∼ 6 × 10−2 m2

s , exceeding what we currently obtain by a factor of

∼ 150. If we allow a larger spatial extent at the downstream end of the field plates, this

could of course increase the admissible etendue even without changing the “fixed collima-

tor” on the upstream end of the field plates. We will see that the anticipated gain in flux

from a molecular lens is . 15, so the etendue limit is not a significant constraint.

In particular, there are likely minimal gains to be obtained from using the full power

of non-imaging optics, which is designed to transfer the maximal initial number of rays to

the region of phase-space that can be detected. An imaging element such as a lens, while

not achieving this goal, is suitable because the phase-space volume that we are capable of

detecting is orders of magnitude larger than the phase-space volume of molecules that we

actually detect without any molecular focusing.

Energy

The velocity classes that we can turn around in a lens (or other focusing object) are set by

the potential energy of the electric or magnetic interaction with the molecule. For a potential

energy of U0, we expect to be able to focus molecules with velocity up to vmax ≈
√

2U0/m.

The corresponding gain in flux would be ∼
(

vmax
v0

)2
, where v0 is the maximum velocity
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that can be captured with no focusing (in ACME, v0 ≈ 2 m/s as stated earlier). For

a 1-kelvin potential depth with ThO, vmax = 8.2 m/s, giving a maximum gain of ∼ 17.

Since U0 ∝ v2
max, and likewise the number of momentum states that can be captured are

proportional to v2
max (the area of the circle in (vy, vz) phase-space with radius vmax), we

expect the gain to be limited by G ≤ 17 × U0[K]

In principle, it is possible to turn around any velocity class with any potential depth

provided a lens profile can be constructed in an explicitly x-dependent way. This will be

explored more in subsequent sections. Unfortunately, given reasonable engineering con-

straints, the performance over a “simple” lens can only be improved by ∼ 30%.

6.1.3 Collimating an ideal source

To help build intuition for the design of a molecular lens, we’ll consider the problem of

collimating a point source, which would be the ideal limit (from the perspective of molecular

focusing) of our beam source.

Consider the simplest case of a point source at a distance l from the beginning of a lens,

defined to be at position x = 0. For a molecule with initial divergence angle θ ≪ 1, the

position and velocity upon entry are y(x = 0, θ) = lθ and vy(x = 0, θ) = vxθ. We would like

to find a class of potentials U(x, y) such that all trajectories emerge at x = L collimated,

i.e., vy(x = L, θ) = 0 independent of θ.

It is fairly easy to show that U(x, y) = U(y) = 1
2mω

2y2 suffices for some particular

length L; we’ll work this out in detail in Sec. 6.1.4. In particular, all molecules undergo

oscillatory motion. The harmonic oscillator potential has the special property that the

period of oscillation is independent of the amplitude, so all molecules turn around at the

same time, and thus the same x-position for a given forward velocity.

As we will see, it’s actually possible to generalize this result to the case in which ω =

ω(x), so that the strength of the transverse harmonic potential depends on the longitudinal

position within the lens. For clarity, I will defer the details of this until I’ve described the

basic approach to the molecular lens design.
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Figure 6.1: Diagram of a thick lens. Here, the lens is drawn as symmetric so that f1 = f2

and do = di.

6.1.4 Thick lens model

We will build on the geometric optics analogy for a molecular lens by considering the

operation of a thick optical lens. First, the thin lens equation is

1

di
+

1

do
=

1

f
, (6.4)

where di is the image-lens distance, do is the object-lens distance, and f is the focal length

of the lens. The magnification is M = di
do

. (We don’t care whether the image is inverted,

so I always take M > 0).

For a thick lens, we will see that similar formulas hold but the corresponding quantities

are defined as follows [205, Sec. 6.1]; see Fig. 6.1. The focus f is the position from

which a point source is collimated through the lens. If we extend the path of an initally

diverging ray straight through the lens, and do likewise in the reverse direction for the

outgoing horizontal ray, then those two lines intersect at a point. The collection of all such

intersection points define a plane, known as the first principal plane, at x = h1. There is

a second focal point on the “downstream” side of the lens, with a corresponding “second

principal plane” at x = h2. We then interpret do and di, respectively, as the distance

between the object and “first principal plane,” and between the image and the “second

principal plane.” Conventionally, the focal lengths f1 and f2 are also measured relative

to their respective principal planes. Note that typically f1 6= f2 if the potential used to

generate an effective molecular lens does not have reflection symmetry about x = L/2 for
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a lens with length L (a case that we will explore).

To compute the magnification, note that M ≡ Hi
Ho

, where Ho(i) denotes the transverse

position of a ray at the object or image plane. Let θo be the angle between the horizontal

and the line passing between a point on the object and the focus, while θi is the analogous

angle for the image. Then by construction, Hi = θof1 and Ho = θif2, so M = θo
θi

f1

f2
. Now

notice that (Hi + Ho)θo = do, and likewise for di, so that M = f1

f2

di
do
. (Reference to Fig.

6.1 may be helpful.) This reduces to the thin-lens magnification equation when f1 = f2, as

occurs for an ordinary optical lens with air on both sides.

We would like to obtain the analogue to the thin-lens equation as well. We note that

θodo = θidi = H1 +H2, and θof1 = θi(di−f2) = H2. From these, we find dif1 +dof2 = dodi.

In the special case that f1 = f2, this can be simplified to the usual thin-lens equation.

Harmonic potential as a thick lens

It is clear from the discussion of collimating a spatial point source, with the logic reversed,

that a set of horizontal rays will converge on some focal point if incident on a potential

U(y) = 1
2mω

2y2 from either the left or right, so there exist some focal lengths f1(2) relative

to principal planes at x = h1(2). The simplest case is a uniform harmonic potential between

x = 0 and x = L, and zero potential outside these bounds. By reflection symmetry about

x = L/2, we already know that f1 = f2 ≡ f and h1 = L−h2 ≡ h. We consider the “inputs”

to be R (the inner radius of the lens), Umax (the potential depth of the lens at the wall), m

(the molecular mass), v (the forward velocity), M (the magnification), and do (the distance

between the object and first principal plane). By straightforward application of Newton’s

laws, we can find the useful relations

• ω2 = 2Umax/(mR
2)

• k ≡ ω
v is the wavenumber of molecule oscillations in the potential (typically ∼ 0.4

cm−1)

• di = Mdo

• f = di
M+1
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• l =
√

f2 − k−2 is the distance between the focal point and the physical input aperture

of the lens

• h =
√
l2 + k−2 − l

• L = k−1
(

π
2 − sin−1

[

l
f

])

In practice, the only variables of interest for optimization are the lens radius R, the distance

from the object to the first principal plane do, and the magnification M . It is interesting to

note that, other things equal, there is a maximum inner radius Rmax at which the distance

between the focal point and physical input aperture vanishes, l → 0. For R > Rmax,

the focal point is inside the physical lens, so that a beam will only be collimated if it is

converging (as opposed to parallel) at the entrance to the lens. Naturally, I ignore this

regime of parameter space in my simulations. We usually find that the gain is optimized

with respect to R by allowing R → Rmax so that as many molecules are admitted into the

lens as possible.

For any other geometry with a harmonic potential that depends on the longitudinal

position, U(x, y) = 1
2mω(x)2y2, it is not typically possible to find algebraic expressions

for f2 and f1. However, the focal lengths can be found by direct simulation of single

trajectories that are initially horizontal with ~v = +vxx̂ and ~v = −vxx̂; the positions at

which these trajectories cross the x-axis are the focal points.

A homogeneous molecular lens with a quadratic potential can therefore be analyzed

fairly straightforwardly in terms of the thick-lens equation. I have found that, although

this helped build my intuition somewhat, this approach did not facilitate any quantitative

benefit over numerically optimizing a lens with respect to the radius and length.

6.1.5 Parameter space and optimization strategy

In ACME, we have many constraints on the molecular beam geometry. We require that no

molecules hit the field plates in order to prevent patch potentials from forming; we could

modify the skimmer aperture; we can vary the dimensions of the collimators at the entrance

to the field plates, as well as the source-lens and lens-field plate distances; we can design
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the collection optics to accommodate different “detection volumes”; and of course we can

implement different lens geometries.

In order to make the design process tractable, we want to eliminate several degrees of

freedom. Changing the skimmer diameter or position within reasonable ranges should not

significantly affect the optimal lens design, even if it affects the final flux (depending on the

distribution of molecules in the zone of freezing, which we don’t understand particularly well;

see Sec. 6.2). Therefore, I do not consider alternate skimmer dimensions when optimizing

the lens geometry.

We can also pull the field plates farther apart to reduce the number of trajectories

that intersect them, at the relatively minor cost of applying larger voltages to obtain the

same electric field, and the more significant cost of potentially reduced optical collection

efficiency. While initially optimizing over the lens parameters, we can assume completely

open collimators at the interaction region, only maximizing the number of trajectories that

pass through some detection region. After an optimal lens design is obtained, we can

decrease the collimator size until molecules no longer hit the field plates. This approach

decouples the lens and collimator specifications. The final gain, in which no molecules are

permitted to hit the field plates, can be up to 20% lower than when the collimators are left

completely open2.

For a 1-kelvin potential depth, it is possible to turn around ThO molecules with trans-

verse velocity v⊥ ≈ 8 m/s. If the source has a 3 mm radius at a distance of 20 cm from the

lens, then the opening aperture must be nearly an inch in diameter to admit all energeti-

cally accessible molecules. (The situation is actually somewhat worse than this because a

trajectory with v⊥ ≈ 8 m/s can only be turned around if it enters near the center of the

lens, not near the walls.) A larger-diameter lens must necessarily be longer because the

corresponding oscillation frequency ω decreases with the inner lens radius. Given reason-

2. This result assumes a 5 cm field plate separation, slightly larger than the 4.5 cm separation used in
ACME II. However, the presumed detection volume is no larger than ACME II, and this change makes
little substantial difference in the calculated flux gain due to the lens. The main effect of a slightly larger
plate separation is the complete elimination of otherwise rare events in which molecules intersect the field
plates for the largest practical collimator spacing. If we decide against any redesign of the electric field plate
geometry, then the conclusions of this section will not be significantly modified (in particular, the focusing
potential energy used in the end is likely to alter the results by a larger margin).
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able engineering constraints, I find that we should place the lens as close to the source as

possible. The default skimmer-lens distance I have used is 25 cm so that we plausibly have

space to prepare the focusing state. Xing Wu has recently explored more aggressive ways

to reduce the source-lens distance to as little as 20 cm, including by performing rotational

cooling inside the beam source vacuum chamber. I likewise minimize the distance between

the lens and interaction region field plates at around 80 cm, based on practical constraints

such as the size of the magnetic shielding. This could plausibly be reduced further, for

example by eliminating one or two of the five layers of magnetic shielding. However, the

lens-field plate distance affects the number of detected molecules only weakly3.

For the quantitative results of simulations discussed here, I assume a maximum potential

energy of 1.4 K, consistent with estimates for the magnetic lens made by Adam West.

However, the exact potential depth that we will use–even whether we use a magnetic or

electric lens–is still to be determined. To a good approximation, the number of molecules

focused into the detection region is linear in the potential depth.

I compute a gain over the ACME II flux assuming perfect preparation into and out of

the focusing state (only because the degree of imperfection is not yet known). The detection

area is assumed to be 3 cm in diameter (comparable to the cloud size at the end of the

field plates in ACME II). The whole procedure is repeated for detection in a dump region,

1 m downstream of the field plates, with “gains” normalized to the number of molecules

that reach that detection region in the ACME II geometry. These simulations account for

the possibility that we will perform optical cycling detection in ACME III in a separate

vacuum chamber outside of the magnetic shields. The assumption that this will occur 1

m downstream is fairly arbitrary; as the optical cycling project develops, the requirements

for the detection region will be much clearer. Nevertheless, under these assumptions, a

“gain” of 30 in the dump region is a gain of only ∼ 10 compared to current ACME II levels

because the “baseline” with no lens is smaller (due to the reduced solid angle of a detector

1 m downstream of the field plates). I’ve chosen to use this convention partly because it

3. For a given geometry, the total distance from the source to the detector can affect the “gain” over the
no-lens configuration significantly, simply because the solid angle subtended by the detection area is reduced
if the detector is farther from the molecular source. This is important to keep in mind if comparing the
advantage of a molecular lens to the geometry optimized for no lens.
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Figure 6.2: Example trajectories with detection in the interaction region. Detected trajec-
tories are in green, undetected in black. No molecules hit the field plates in this geometry.
Thick vertical black lines are collimators (skimmer, IR collimators, and detection bound-
ary), hotizontal blue lines show the inner lens radii, and horizontal red lines show the field
plates (5 cm apart in this simulation).

makes clearer what the “pain vs. gain” curve is for implementing a particular lens design; if

we detect in the dump, then a lens will be much more essential even if it cannot contribute

an increased flux over ACME II levels. In the same spirit, however, it is important to

realize that the state transfer into and out of the focusing state will not be perfect. For the

plausible one-way transfer efficency of 80%, the gains reported here would need to be scaled

down to 65% of their nominal values, to account for the losses when transferring both into

and out of the focusing state.

Trajectory simulation

The trajectory simulations are written in MATLAB, and closely follow the approach used

by Adam West in earlier trajectory simulations for ACME.

I model the source as a disc, uniformly occupied up to a small thickness and finite

diameter. The longitudinal velocities are normally distributed with average value v̄|| =

180 m/s and standard deviation σv||
= 17 m/s. The transverse velocities are normally

distributed with average v̄⊥ = 0 and standard deviation σv⊥
= 52 m/s, so that the FWHM

divergence angle is 39 degrees [152]. A molecule path is “successful” if it passes within the
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skimmer aperture and through some target detection region. I also include a collimating

aperture upstream of the field plates to prevent depositing molecules on the field plates,

though this doesn’t significantly affect the optimal lens design. Molecules are also marked

“unsuccessful” if they hit the inner wall of the focusing element.

I create an array of particle positions, velocities, and arrival times in the source, at

the skimmer and other apertures (e.g., 50 K radiation shield), at a sequence of small steps

within the lens, at the field plate collimator, at the end of the field plates, and in the

detection region. It is convenient to propagate particles by position rather than time steps,

though the time to traverse to the next position must be calculated. For each step within

the lens, I assume an approximately constant radial acceleration and use the corresponding

kinematic equations of evolution. Step sizes are typically ∼ 1 mm, or up to 1 cm for rough

optimization of a lens geometry. (Either step size is sufficient for all practical purposes.) I

index each particle at each position along the beam line to record whether its radial position

is valid (e.g., within the relevant collimator).

It is instructive to examine trajectory plots including color-coded “good” trajectories,

“bad” trajectories with reasonably small transverse velocities, and trajectories that hit the

field plates. Extremely large transverse velocities will never be focused by the lens and

might as well not be plotted. The collimator, lens, and field plate boundaries are all shown.

See Fig. 6.2.

A minor practical point about trajectory simulation: in principle, there should be a

forward (or backward) momentum impulse as a molecule enters or exits a lens, or for that

matter moves through a longitudinally inhomogeneous lens, consistent with energy conser-

vation. In practice, including this impulse makes a negligible difference on the trajectories

because v|| ≫ v⊥ and 1
2mv

2
|| ≫ Umax. I therefore typically “turn off” these forward impulses,

but have the option of including them in the simulation.

Adam West’s simulations of a magnetic Halbach array found that fields at the walls of

the magnets could be 1.5 − 1.9 T. The Zeeman shift is −G‖
Ω

J(J+1)µBBM , where |G‖| =

gSΣ + gLΛ[146, Sec. 2.5]. For the Q3∆2 state, |G‖| = 2 and gQ(J = 2) ≡ G‖
Ω

J(J+1) = 2
3

4.

4. Xing Wu has since made careful measurements of |G‖| = 2.061(4). Details are available in the internal
ACME lab log[206].
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Figure 6.3: Gain with a curved and straight magnetic lens for detection in the dump region,
as a function of lens length. The distances between the source and lens entrance, as well as
between the lens exit and interaction region, are kept fixed.

For a focusing state of J = 2, M = 2, the total magnetic moment is gQ(J = 2)M = 4
3µB ↔

4
3 ×0.67 K/T ≈ 0.9 K/T. Assuming we can obtain a magnetic field (averaged over azimuthal

angles) of ∼ 1.6 T, we could have thus a ∼ 1.4 K potential depth. This is what I’ve assumed

in all the following results. In a reasonable regime, the achievable gain scales proportionally

with the potential depth, as discussed previously.

Adam West had studied the possibility of using the X(J = 2,M = 2) state for an

electrostatic lens, but we have since realized that the linear Stark shift in the Q state, due

to the Ω-doublet structure, would allow for a large linear Stark shift at lower applied electric

fields. Xing Wu has measured a molecule-frame dipole moment of DQ ≈ 4.07 Debye and has

estimated an achievable 1.8 K potential depth with an electric hexapole configuration[207].

In this scenario, the gains would be ≈ 1.8/1.4 ≈ 30% higher than the values quoted here.

6.1.6 Inhomogeneous potentials

Now that we have discussed the basic approach to simulating the performance of a molecular

lens, let us return to the consideration of the case in which the strength of the harmonic

potential depends on the longitudinal position within the lens. Any x-dependent potential of
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the form U(x, y) = 1
2mω(x)2y2 maintains the relationship v(x, θ1)/θ1 = v(x, θ2)/θ2 over the

evolution of molecular trajectories originating in a point source, for any initial divergence

angles θ1 and θ2. Thus all trajectories from a point source have vanishing transverse velocity

vy(x = L, θ) = 0 for the same lens length L, for any initial divergence angle θ. This

is because at any particular position5, ay = −ω(x)2y. Therefore y(t + dt, θ) = y(t, θ) +

vy(t, θ)dt − 1
2ω(x)2y(t, θ)dt2, and vy(t + dt, θ) = vy(t, θ) − ω(x)2y(t, θ)dt for a small time

interval dt. Given that vy(t = 0, θ) ∝ θ and y(t = 0, θ) ∝ θ, it follows that at early times

y(dt, θ) ∝ θ and vy(dt, θ) ∝ θ. This reasoning proceeds iteratively up until any finite time,

and we find that y(t, θ) ∝ θ, vy(t, θ) ∝ θ, where the proportionality constant at any time is

generically a complicated function of ω(x)2. I have confirmed this reasoning (which clearly

does not constitute a rigorous proof) by simulating trajectories for a point source with many

different functional forms of ω(x)2, and a focal point is always produced at some distance

from the input of the lens.

A straight lens with ω2 6= ω(x)2 is simplest to construct and understand, so we would

have to see a significant improvement in flux to justify using an x-dependent potential.

Here, we will explore this possibility. To do so, I assume that in practice we would build

a magnetic lens using many longitudinal segments, all of which can produce a maximum

B-field at the wall corresponding to a fixed potential depth U0. The harmonic oscillation

frequency varies with the inner radius as ω(x)2 ∝ R(x)−2, so let ω(x)2 ≡ ω2
0

R2
0

R(x)2 . Note

that for an electrostatic lens, the potential depth falls off as 1/R(x) (linear Stark shift) or

1/R(x)2 (quadratic Stark shift) so that ω(x)2 ∝ R(x)−3 or ω(x)2 ∝ R(x)−4, respectively.

One particularly interesting choice of R(x) satisfies the condition that the most extreme

trajectory from a point source, with θ = θmax, enters the magnetic lens at the wall and

follows the path of the wall until its exit. Since F = −mω(x)2r, this ensures that the

restoring force on this trajectory is always maximized; a larger wall radius would reduce the

force while a smaller one would obstruct the molecule. We can find the profile of such a lens

by solving Newton’s second law for the extreme trajectory, r̈(t) = d2r
dx2 v

2
x = −ω2

0
R2

0
R(x)2 r(x).

5. For the conclusions here to hold exactly, we must neglect any acceleration along x that arises due to
the x-dependent potential. However, since the x-velocity of trajectories within a molecular lens changes
negligibly compared with the forward velocity, this is a reasonable approximation.

243



Enforcing R(x) = r(x), we obtain the differential equation

d2R(x)

dx2
= −ω2

0R
2
0

v2
x

1

R(x)
. (6.5)

This can be solved in Mathematica with initial conditions R(0) = lθmax, R
′(0) = vxθmax.

The analytical result is fairly complicated, but can be implemented directly into simulations

to generate a lens profile. For reasonable parameters, the resultant trajectories (and likewise,

the lens walls) look more or less indistinguishable from parabolic. The entrance aperture

has radius lθmax, and the exit aperture is typically larger. The length of the lens could

be approximately optimized by finding the position at which the tangent line of the lens

profile intersects the center of the detection region, since a molecule exiting the lens at that

position (originating from a point source) would follow the same path.

Under some conditions, using this sort of potential can give ∼ 35% more molecules

entering the detection region relative to a lens of constant radius. If we were willing to

construct arbitrarily large and complicated lenses, then we should be able to much more

nearly saturate the etendue limit6 with this method. Indeed, the advantage of a curved lens

over a straight lens tends to grow with the lens length; see Fig. 6.3.

The advantage of a curved lens over a straight lens is modest only because of engineering

constraints. If we want to capture molecules with an initial divergence angle of θ = 0.05

rad, then the entrance aperture (assumed to be a distance of ∼ 25 cm from the source)

must be ∼ 2 cm in radius to provide enough distance for the molecule to turn around. The

corresponding length is then ∼ 2 cm/0.05 ∼ 40 cm. This is, more or less, the minimal length

to remove a single potential depth of transverse energy. A curved lens must therefore be

at least ∼ 80 cm in order to turn around a significantly higher transverse velocity than a

straight lens. While this is possible to construct, it is probably not worthwhile to do so.
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Figure 6.4: Gains for dump region detection with a curved lens. The inner radius of the
lens (vertical axis) is proportional to the maximum designed angle θc that parametrizes
the curved lens geometry, and the horizontal axis gives the length of the lens, up to 1 m.
With a 45 cm long lens, gains of 27 (compared to detection in the dump region with no
lens) could be obtained if molecules were allowed to hit the field plates. Optimizing the
interaction region collimator spacing to prevent collisions with the field plates only reduces
the expected gain by ∼ 10%, to G = 24. Longer lenses have large output apertures, making
collimation through the field plates much more difficult.

Location Type Length (cm) r [θc] G (no lens) G (ACME II)

IR Straight 45 2 cm 10.5 10.5
IR Curved 35 0.05 rad 13.7 13.7

Dump Straight 45 2 cm 21.6 7.9
Dump Curved 35 0.05 rad 26.7 9.7

Table 6.1: Optimized performance with straight and curved lenses, with detection in the IR
and dump. Gains over both the no-lens case (for the same geometry, aside from the length
of the lens itself) and ACME II levels are given. Curved lenses tend to slightly outperform
straight lenses and are more compact for the same gain, but also much more difficult to
construct.
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Results

I scan over design parameters as in Fig. 6.4 to find expected gains in the following four

scenarios: detection in the interaction region with a straight or curved lens, and detection

in the dump region with a straight or curved lens. After optimizing the collimator spacing

to prevent collisions with the field plates, I obtain the results in Table 6.1. We see that

curved lenses tend to somewhat outperform straight lenses (20-30%) and need not be as

long. I have found that returns are very diminishing for using much longer lenses because

the output molecule cloud is large and it becomes difficult to collimate the beam through the

field plates. Note that the optimal design parameters are essentially identical for detection

in either the dump or IR since the beam is highly collimated in both cases (see Fig. 6.2).

I have also considered the possibility of a non-imaging focusing element, which does not

significantly outperform the “imaging” molecular lens. See Appendix E for details.

It is essential to realize that the results summarized in Table 6.1 apply under the as-

sumptions of a 1.4 K potential depth lens and perfect transfer into and out of the molecular

focusing state. This latter assumption is certainly incorrect. Provisionally assuming a

≈ 80% transfer efficiently in each step, the gains computed here should be reduced by a fac-

tor of ≈ 0.65. For example, the straight lens with detection in the interaction region would

have a gain of approximately 6.8, when state transfer inefficiencies are included. Further-

more, certain geometric assumptions made here could turn out to be merely approximate.

For example, as mentioned previously, Xing Wu is exploring the possibility of performing

rotational cooling in the beam source vacuum chamber, which would allow the lens to be

placed closer to the ablation cell, further improving the gain over the ACME II molecular

flux.

6.2 Modeling the ablation source

In ACME, we have always assumed an effective molecular source with a diameter of 7 mm

at a “zone of freezing,” after which no collisions occur, 2 cm downstream of the cell aperture.

6. Namely, the maximum possible gain of 150, based on the volume of the region in phase-space (i.e., the
etendue) that evolves from the entrance of the field plates to the exit without colliding with the walls.
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However, these parameters have never been measured very precisely before. In ACME III,

we could conceivably obtain an improved molecular flux by expanding the skimmer radius,

provided there are transversely slow molecules just outside the current skimmer radius of 3

mm. The distance between the zone of freezing and skimmer is assumed to be ∼ 1 cm.

6.2.1 Effective source model

In order to characterize the source, we will use a very simple model (which is consistent

with, but not strongly supported by, data presented later in this section). Assume that at

some position x0 along the beam line, collisions freeze out. Beyond this position, trajectories

are entirely ballistic. The transverse velocities vy, vz ∼ N(0, σ2
v) are normally distributed

with zero mean and standard deviation σv. Consistent with a Maxwell-Bolzmann distri-

bution, velocities in orthogonal directions are assumed to be uncorrelated with each other,

cov(vy, vz) = 0. The transverse spatial distribution is also modelled as a normal distribu-

tion, y, z ∼ N(0, σ2
r ), again with no correlation between orthogonal axes. Upstream of the

zone of freezing, trajectories are “scrambled” by collisions, so we assume that vy(z) and y(z)

are uncorrelated with each other at the zone of freezing. This last assumption is especially

unlikely to hold, since contours of constant density are curved and any boosting should

happen perpendicular to these contours. However, the assumption that positions and ve-

locities are uncorrelated at the zone of freezing gives reasonable results and is much simpler

to work with.

Downstream of the zone of freezing, both transverse positions y and z evolve com-

pletely independently. I will discuss the dimension y for concreteness. At a distance

x−x0 downstream of the zone of freezing, the transverse position and velocity are given by

y → y′ = y+ (x−x0)
vx

vy and vy → v′
y = vy. In other words, y′ and v′

y are linear combinations

of the independent normally distributed variables y and vy (assuming a fixed velocity vx

along the beam axis). By definition, y′ and v′
y are therefore jointly normal random vari-

ables. It turns out that the full distribution of a pair of jointly normal random variables,

each of which have vanishing mean, is characterized by only σ2
y′ , σ2

v′
y
, and the correlation

coefficient ρ between y′ and v′
y[208, Sec. 4.7]. We can directly compute σ2

v′
y

= σ2
vy

and
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σ2
y′ = σ2

y + (x−x0)2

v2
x

σ2
vy

. Further,

ρ =

[

1 +
v2
x

(x− x0)2

σ2
y

σv2
y

]−1/2

. (6.6)

The resulting bivariate normal distribution has several nice properties. For example,
∫

dyf(y, vy) ≡ f(vy) is a normal distribution in the velocity along y with variance σ2
vy

, and

analogously for f(y). This will be important for our measurement of σ2
y , σ

2
vy
, and ρ(xskimmer),

which determines everything we’d like to know about the effective source at the skimmer

position (to the extent that this model accurately describes the molecular trajectories at

the “zone of freezing”).

6.2.2 Measurements

We used a 512 nm laser beam driving the X → I transition to perform Doppler scans and

absorption measurements at many positions in the beam box. The laser is split into two

paths. One beam probes the in-cell absorption just in front of the cell nozzle and the other

beam is translated outside the cell over a 2 × 1 cm area in the x× y directions. We perform

out-of-cell Doppler scans on-axis every 3 mm between the nozzle and skimmer. In addition,

we measure the out-of-cell density, normalized to in-cell production, every 2 mm vertical

step and 3 mm horizontal step along the beam axis. We have found that the peak density

occurs at the cell nozzle and is transversely narrow there, as expected. Farther from the

cell, the density along the beam line becomes smaller and the beam becomes transversely

larger. Most of the analysis code to extract densities from the raw data was written by

Xing Wu.

The beam width and transverse velocity width extracted from the density scans and

Doppler scans, respectively, are shown in Fig. 6.5. As expected, the transverse velocity

width rapidly increases just outside the cell, as the molecules are boosted out of the cell

nozzle, but levels off for x & 1 cm. Unfortunately, the signal-to-noise ratio from the absorp-

tion data significantly deteriorates for x > 15 mm. Perhaps counterintuitively, however,

the transverse spatial width of the beam does not rapidly increase between x ≈ 1 cm and

x ≈ 2 cm. This is in fact expected from our model, in which σ2
y(x) = σ2

y(x0) + (x−x0)2

v2
x

σ2
vy

.
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Figure 6.5: Measured beam width (left) and transverse velocity width (right) at each x-
position. Transverse spatial widths are obtained from gaussian fits to absorption data as
a function of the vertical position of the absorption laser, for each longitudinal position.
Doppler widths are obtained from gaussian fits to laser frequency scans with the absorption
laser vertically centered on the molecular beam, for each longitudinal position. Both plots
are expected to be nearly flat between x ≈ 1 cm and x ≈ 2 cm; see discussion in main text.

Note that for vx ≈ 200 m/s, σvy ≈ 50 m/s, σy(x0) ≈ 4 mm, and x0 ≈ 1 cm, we anticipate

σy(20 mm) ≈ 4.7 mm, indistinguishable from σy(10 mm) ≈ 4 mm within the noise of the

measurement. On the other hand, sufficiently far downstream (in this case, x & 3 cm),

our model predicts a much more dramatic dependence of σy on the longitudinal position,

dσy

dx → σvy

vx
, corresponding to a FWHM divergence of7 2.355

σvy

vx
≈ 33◦. This far-downstream

prediction may match our intuition better than the intermediate regime, which occurs near

the zone of freezing.

Both transverse widths (namely, spatial and velocity) increase rapidly until around

1 cm and then level off, suggesting the longitudinal position of the zone of freezing is

xzof ≈ 1 cm. The actual “zone of freezing” is not necessarily a plane at a well-defined

longitudinal position, so I won’t take great pains to define it rigorously. Combining the

data at x =9, 11, 14, 17, and 20 mm, we obtain a downstream Doppler width of 1σ = 50±1

m/s. The beam size, of course, is expected to continue growing past the zone of freezing due

to the transverse velocity width, but as we just explained, it only does so only negligibly

very near the zone of freezing according to both our model and the data. I’ll therefore take

7. Nick Hutzler has measured σvy ≈ 75 m/s, with correspondingly larger FWHM divergence angles, in a
different molecular beam source and with a different ablation cell geometry [146, p. 3.3.4]
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Figure 6.6: Gain over ACME II as a function of the fractional increase in skimmer size.
Doubling the skimmer size gives a gain of approximately 2, while increasing the skimmer
size by a factor of 2.5 increases the flux by over a factor of 3. This does not include effects
of the lens, and assumes positions and velocities are uncorrelated at the zone of freezing.

the size of the beam “at the zone of freezing” to be the weighted average of measured sizes

at 9 and 11 mm, giving σr(x = xzof) = 3.8 ± 0.2 mm. Note that 2σr(x = xzof) is fairly close

to the 7 mm usually quoted as the “size” of the source.

6.2.3 Potential gains from increased skimmer size

In the ACME II geometry, we can only currently accept molecules with a transverse velocity

of approximately 2 m/s or less. With a magnetic lens, this acceptance could increase to

about 8 m/s. Over a distance of 1 cm, a molecule with transverse velocity of even 10 m/s

increases its transverse position by only 0.5 mm, assuming a 200 m/s forward velocity.

Therefore, to a good approximation, the molecules of interest to us remain at the same

transverse position between the zone of freezing and the skimmer. Currently, the skimmer

has a radius of 3 mm, or σr(x = xzof )/1.3. As a result, if we assume that transverse positions

and velocities are uncorrelated at the zone of freezing, then about 73% of low-divergence

molecules are currently removed from the beam by the skimmer8. Recovering the 73% of

transversely slow molecules would constitute a gain of about 1/0.27 = 3.7. With a skimmer

8. To perform these calculations, remember that the radial population distribution is f(r) ∝
r exp(−r2/(2σ2

r )), rather than a normal distribution as in the transverse cartesian directions.

250



radius of about 2.5σr(x = xzof ) = 9.5 mm, we would expect a signal gain of greater than 3.

This would come at a potentially very significant engineering cost of pumping the increased

neon background gas downstream of the skimmer. The large skimmer vs. small skimmer

gain is borne out by trajectory simulations with no lens included, for the model considered

in this section. See Fig. 6.6 for the expected gain vs. skimmer size, normalized to ACME

II.

In the most pessimistic model, consider instead the case that the positions and velocities

are maximally correlated at the zone of freezing, so the molecules with v⊥ = σv/5 = 10

m/s lie at transverse positions of r = σr/5 = 0.8 mm. (Recall that we can’t easily infer the

correlation between position and velocity, since we measure only f(vz) and f(y), with no

simultaneous information about position and velocity along a single axis.) These molecules

are already admitted to the IR, so expanding the skimmer would not give a gain in flux.

More realistically, we might (or might not) have a partial correlation between positions and

velocities due to the boosting effect in the buffer gas beam, so a gain somewhere between

these two models–in which the positions and velocities are either fully correlated or not

correlated at all–is expected. Which case is more realistic is best determined by measure-

ments with a larger skimmer, of course, but we could also refine our model by comparing

to direct simulation Monte Carlo trajectories. We have not yet made measurements of the

downstream flux using a larger skimmer diameter to distinguish between these two cases.

6.3 Silicon photomultipliers for improved quantum efficiency

One of the significant improvements of ACME II over ACME I was the new detection

wavelength (512 nm vs. 690 nm), where PMTs with higher quantum efficiency could be

obtained. In particular, the Hamamatsu R7600U-300 used in ACME II has a quantum

efficiency of ≈ 25% at 512 nm. We have made some preliminary investigations into using

silicon multipliers (SIPMs) to achieve a quantum efficiency of 40-50%, for a molecule-flux-

equivalent gain between a factor of 1.5 and 2. In this section, I will briefly describe the

various considerations involved in changing the photodetection technology used in ACME.

One primary impediment to using silicon photomultipliers rather than PMTs is the
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ǫdet. F ǫdet./F Dark p.e. rate (cps)

PMT 0.25 1.2 0.20 ∼ 6 × 103

Silicon photomultiplier 0.4 1 0.4 ∼ 9 × 107

Avalanche photodiode 0.80 2 0.4 ∼ 2 × 109

Table 6.2: Approximate photodetection efficiencies and excess noise factor. Dark photo-
electron (p.e.) count rates are given in counts per second (cps) at room temperature and
scaled for ≈ 1 in2 detector areas. Typical values are merely representative; see [209–211]
for full data sheets.

higher “dark current,” an electronic signal indistinguishable from photoelectrons that origi-

nates due to thermal processes rather than molecular fluorescence. The time-averaged dark

current is associated with current shot noise, analogously to a photoelectron current. If the

dark current exceeds the fluorescence signal current, then the signal-to-noise ratio (SNR)

will be dominated by the dark current shot noise rather than photoelectron shot noise.

We will return to this issue of the dark current shortly. For the moment, consider the

case that the dark current is negligible, either because it is reduced through some technical

effort or because it is dominated by the signal current. In this case, the photon shot

noise limit is determined by the total number of detected photons: the uncertainty in the

measured phase is σφ = (2|C|
√

N × ǫ/F )−1, where N is the total number of molecules, ǫ is

the photon detection efficiency, and F ≥ 1 is the photodetector “excess noise factor” arising

from the statistical nature of the photodetector’s intrinsic gain process. Here, ǫ includes

contributions from both finite optical collection efficiency (e.g., due to light collection from

a region with less than 4π solid angle) and from the finite photon detection efficiency of the

photodetector itself: ǫ = ǫcoll. × ǫdet..

For light collection at 512 nm, the photon detection efficiency is up to ǫdet. ≈ 0.25 as

stated previously. On the other hand, silicon photomultipliers can have up to ǫdet. ≈ 0.5 if

operated at significant “overvoltage” (explained below), and avalanche photodiodes (APDs)

have significantly higher efficiencies, ǫdet. ≈ 0.8. However, it is important to consider the

effect of excess noise factors, which vary by up to a factor of 2 among different types of

detector. For PMTs, F ≈ 1.2; for silicon photomultipliers, F ≈ 1; for avalanche photodiodes,

F ≈ 2. The origin of these excess noise factors is discussed in detail in Appendix F.

See Table 6.2 for a representative summary of the efficiency, excess noise, and dark
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count rate of the photodetectors we’ve considered. Due to the combination of photode-

tector efficiency ǫdet. and excess noise factor F , the potential shot-noise limit from silicon

photomultipliers and avalanche photodiodes is comparable. However, the dark current from

avalanche photodiodes is approximately an order of magnitude larger than that of silicon

photomultipliers (and both are several orders of magnitude larger than for PMTs). As a

result, we decided to investigate the possibility of switching from PMTs to SiPMs, but not

to APDs.

6.3.1 SiPM cooling

However, even the SiPM has a higher dark current (and associated dark current shot noise)

than the ACME II signal level, which is ∼ 3 × 105 detected photons per pulse, and ∼ 2

ms of useful signal in each pulse, for signal count rates of ∼ 108 photoelectron counts per

second (cps). With 8 detectors, this corresponds to ∼ 107 cps/detector. As we see in Table

6.2, the typical dark current for a 1 in2 area SiPM detector is 9 × 107 cps, about an order

of magnitude larger than the signal per detector in ACME II. If the signal in ACME III is

∼ 100× as large as in ACME II, as anticipated, then this dark current is unlikely to limit

the signal-to-noise ratio we can achieve. However, if the signals are not actually this large,

then it may be necessary to reduce the dark current.

The solution to the high dark current is to cool the detector, which reduces the dark

current by a factor of 2 for every 7 − 10◦ C[212–215]. Thus we can expect the SiPM

dark current to be overwhelmed by ACME II signals provided the detectors are cooled

below ≈ −15◦ C. Unfortunately, because this temperature lies below the dew point (and

indeed below the freezing point of water), the SiPMs must be operated in either vacuum

or an environment flushed with dry nitrogen gas, in order to prevent condensation and ice

accumulation on the detector surfaces.

Because SiPM devices are constructed to be have dimensions at most 6 mm × 6 mm,

we will need to use an array of SiPM devices in order to obtain ≈ 1 in2 detection areas. We

prefer to use manufacturer-provided (likely SensL or Hamamatsu) PCB boards to power

and read out the signals from these arrays rather than design our own (which would be

significantly more complex than operating a single detector). However, PCB is an electric

253



insulator, so direct cooling of an out-of-the-box SiPM array using a thermo-electric cooler

(TEC) would be difficult. For this reason, Adam West designed a small vacuum chamber

where we can directly cool a small copper box with a TEC to ≈ −20◦ C. The SiPM detector

can be operated inside this copper box and radiatively cooled. Light can be conveyed to

the SiPM via a light pipe that enters a hole in the top of the cold copper box. This project

was further developed by Shadi Fadaee, an undergraduate working briefly in the group, but

the cooling of the box and corresponding temperature-dependent SiPM properties have not

yet been well characterized.

As mentioned previously, we expect that ACME III will have higher signal count rates

by a factor of ∼ 100 compared to ACME II9. As a result, it might not be necessary to

cool SiPMs at all, and if some cooling is necessary then it might not be necessary to cool

below the dew point, significantly simplifying the technical inconvenience of cooling the

detectors. However, due to a likely redesign of the collection optics for optical cycling

detection10 (one of the most important statistical upgrades being pursued for ACME III),

it may be necessary to increase the detector area by a non-negligible factor (∼ 3). If this is

the case, then the number of detectors used will increase, and the signal per detector will

correspondingly decrease. Thus it is reasonable to expect that significant cooling might still

be required in ACME III if SiPM arrays replace PMTs for photon detection. However, as

of now, it is still unclear whether any cooling at all would be required.

6.3.2 Amplifier electronics

The other technical challenge of using SiPMs instead of PMTs, in addition to that of the

dark current discussed previously, is that SiPMs have a large intrinsic capacitance, which

makes low-noise signal amplification difficult. For example, a SensL 24 mm × 24 mm J-

9. The increased count rate would arise as follows: 10× from the molecular lens, 10× from optical cycling
detection, 2× from improved quantum efficiency of silicon photomultipliers. If one or several of these
improvements do not pan out, then an order-of-magnitude increase in statistical sensitivity would require
only ∼ 30× higher count rates due to the demonstrated suppression of excess noise from ACME II, which
increases the signal-to-noise ratio by ∼

√
3 with no increase in the signal count rate.

10. In particular, we may change our detection protocol to detect fluorescence in a “dump” region, down-
stream of the interaction region, where it may be easier to optically cycle photons without facing critical
limitations in sensitivity due to a background of scattered light. The fluorescence collection would be de-
signed from scratch in this case.
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series array has a total capacitance of 16 nF[210]. Given this, suppose that we were to

measure the signal voltage drop across a resistor R, due to the signal current I. Suppose

we want to maximize R subject to the constraint that the detection bandwidth is 5 MHz,

a factor of 3.6 greater than the characteristic decay rate of the electronic I state (not to be

confused with the signal current). This bandwidth therefore allows us to resolve molecular

dynamics during the experimental readout. Then the maximum viable resistance is only

R = (2π × 5 MHz × 16 nF)−1 = 2 Ω.

Now consider the noise on this measurement. The current shot noise, measured in

units of A/
√

Hz, is δI = G
√

2qeI0, where I0 is the unamplified photoelectron current and

G ≈ 6 × 106 is the intrinsic gain factor of the SiPM. For a photoelectron count rate of 107

cps on a single ≈ 1 in2 detector, I0 = 1.6×10−12 A and δI = 4 nA/
√

Hz. The corresponding

voltage noise, measured across a resistance of 2 Ω, is then δV = 8 nV/
√

Hz.

We would like this voltage noise to be small compared to the input voltage on a sub-

sequent voltage amplifier. For example, the SRS SR445A has an input voltage noise of

6.4 nV/
√

Hz, quite comparable to the signal shot noise from an individual SiPM array.

Since all noise sources are added in quadrature, we would like the amplifier electronic noise

to be at least ∼ 3× smaller than the signal shot noise. As a result, it is necessary to have

a larger effective resistance, or transimpedance, without sacrificing additional bandwidth.

This is a fairly standard problem; the standard solution is a transimpedance amplifier,

in which the effective resistance (or transimpedance) that converts the signal current to a

voltage is set by the negative feedback resistor on an op-amp circuit. In a naive analysis,

the output of the transimpedance amplifier is determined only by the resistance R in the

op-amp feedback network, but not by the capacitance of the photodetector. As a result,

the transimpedance R can be set to relatively large values (e.g., R ≥ 50 Ω) and the corre-

sponding output voltage noise δV = RδI can be increased far beyond the input voltage of

a subsequent amplifier stage. But this would be too good to be true; the photodetector’s

capacitance can contribute to instability of the op-amp, rendering the circuit useless if not

dealt with carefully. Some useful discussions can be found in [216–220].

The challenge in our application is that the photodetector capacitance is relatively

large, and the bandwidth requirements are also relatively high (compared to typical tran-
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simpedance applications). I designed a transimpedance amplifier based on the high-gain-

bandwidth-product op-amp OPA847 (fGBW = 5 GHz), which Xinyi Chen has built and

tested. Unfortunately, the results were somewhat inconsistent across measurement condi-

tions, and the circuit’s voltage output often oscillates. We subsequently identified a different

circuit design that was recently developed for comparable use requirements (detector capac-

itance of ≈ 30 nF, bandwidth of ≈ 4 MHz, transimpedance R = 3.9 kΩ, and transimpedance

amplifier noise of 0.7 nV/
√

Hz)[221, 222]. This design was tested in our lab and found to

meet all these specifications, which are sufficient for our needs. Going forward, we will rely

on this demonstrated design to ensure stability of the SiPM amplifier electronics.

Note that, as with the cooling requirements, in ACME III the circuit requirements might

be relaxed due to the higher shot-noise-limited current I0, and correspondingly larger voltage

noise δV for a given transimpedance R. However, this benefit might once again be mitigated

if a larger total detector area is needed for photon cycling detection.

One last hurdle to using SiPM arrays in place of PMTs is that the gain on each SiPM

detector is sensitive to the overvoltage and temperature. As a result, the supplied overvolt-

age and temperature will both have to be carefully stabilized in order to avoid excess noise

associated with fluctuations in the gain between detectors. To date, we have not made any

serious effort to design or test systems to achieve this high level of stability.

In summary, the SiPM could provide a factor of ≈ 2 increased effective photodetection

efficiency ǫdet./F compared to PMTs. However, SiPMs are best operated in a higher-signal

regime, where dark current shot noise and amplifier noise are negligible compared to the

signal shot noise. These difficulties can be overcome by cooling the detectors and by careful

electronic design, both of which should be feasible. Alternatively, they are automatically

overcome by sufficiently increasing the signal count rate. Therefore, we can reasonably

expect SiPMs to be a more straightforward alternative to PMTs in ACME III, where the

photoelectron count rate will be larger by a factor of ∼ 100, compared to ACME II.
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6.4 Phase measurement with optical cycling

In ACME II, only ǫ ≈ 0.05 of photons emitted in the detection region are actually de-

tected, due to imperfect optical collection of photons (≈ 20%) and quantum efficiency of

the PMTs (≈ 25%). Thus, for a quantum-projection-limited measurement with phase sen-

sitivity σφ = 1
2C

√
Nǫ

, where N is the total number of molecules and C is the measurement

contrast, achieving perfect photon detection (ǫ = 1) would provide the same improvement

in sensitivity as a 20-times greater flux of molecules.11

The obvious ways to increase the total photon detection efficiency, ǫ, are to improve the

optical collection (which was indeed done between ACME I and ACME II, by optimizing

the lens configurations collecting fluorescence and by replacing fiber bundles with thick light

pipes for a higher effective optical collection area) and to use a higher-quantum-efficiency

detector (the subject of Sec. 6.3). There is, however, another method that is complementary

to these two: to detect fluorescence from an optical cycling transition so that many photons

are scattered from each molecule. Suppose, for instance, that exactly n photons are emitted

by each molecule. As long as the probability to detect each molecule is still small, i.e.,

nǫ ≪ 1, then we may expect the signal-to-noise ratio (SNR) to improve as σφ ≈ 1
2C

√
N×nǫ .

Obviously, this result will not hold when nǫ > 1, since then the phase sensitivity would

be better than the quantum projection limit. In this section, I will consider a relatively

general framework for computing the phase sensitivity σφ for a phase measurement via

laser-induced fluorescence (LIF) detection with an optical cycling transition, for a realistic

model of a partially open optical cycling process and finite photon detection efficiency 12.

In the following discussion, we let C → 1.

6.4.1 Phase measurements with LIF detection

The approach we will use to determine the effect of optical cycling on a precision phase

measurement using LIF detection extends beyond the narrow domain of the ACME exper-

11. We will see that this estimate should actually be modified by the excess noise factor f ≈ 1.25 of
the PMTs used in ACME II, so that the maximum possible improvement in effective molecular flux due to
improved detection efficiency would be a factor of 25.

12. The core of this work has been published in [223].
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Figure 6.7: Simple schematic of an optical cycling transition, with probability of decay bℓ
to a dark state, which is not addressed by any laser, and decay probability of 1 − bℓ to the
ground state, which is subsequently driven again to a short-lived excited state.

iment. Many atomic and molecular experiments use the same basic approach as ACME;

namely, a quantum state is read out by LIF, in which population is driven to a short-lived

state and the resulting fluorescence photons are detected. As described previously, due to

geometric constraints on optical collection and technological limitations of photodetectors,

the majority of emitted photons are typically undetected, reducing the experimental signal.

Optical cycling transitions can be exploited to overcome these limitations, by scattering

many photons per particle (atom or molecule); see Fig. 6.7. In the limit that many pho-

tons from each particle are detected, the signal-to-noise ratio (SNR) may be limited by the

quantum projection (QP) noise, also often referred to as atom or molecule shot noise. LIF

detection with photon cycling is commonly used in ultra-precise atomic clock [224, 225] and

atom interferometer [226] experiments to approach the QP limit.

Molecules possess additional features, beyond those in atoms, that make them favorable

probes of fundamental symmetry violation [119, 122, 128, 132, 133, 227] and fundamental

constant variation [225, 228–232], as well as promising platforms for quantum information

and simulation [233–237]. Many molecular experiments that have been proposed, or which

are now being actively pursued, will rely on optical cycling to enhance measurement sen-

sitivity while using LIF detection [119, 128, 132, 133, 227, 232]. Due to the absence of

selection rules governing vibrational decays, fully closed molecular optical cycling transi-

tions cannot be obtained: each photon emission is associated with a non-zero probability of

decaying to a dark state that is no longer driven to an excited state by any lasers. However,

for some molecules many photons can be scattered using a single excitation laser, and up
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to ∼ 106 photons have been scattered using multiple repumping lasers to return population

from vibrationally excited states into the optical cycle. This has enabled, for example, laser

cooling and magneto-optical trapping of molecules [238–240]. Furthermore, some precision

measurements rely on atoms in which no simply closed optical cycle exists [96, 111]; our

discussion here will be equally applicable to such species.

These considerations motivate a more careful, general study of LIF detection for preci-

sion measurement under the constraint of imperfectly closed optical cycling. Some conse-

quences of loss during the cycling process have been considered in [241]. However, the effect

of the statistical nature of the cycling process on the optimal noise performance has not

been previously explored. In particular, the number of photons scattered before a particle

decays to an unaddressed “dark” state, and therefore ceases to fluoresce, is governed by a

statistical distribution rather than a fixed finite number. We will see that due to the width

of this distribution, a naive cycling scheme inflates the noise above the QP limit. In partic-

ular, we find that in addition to the intuitive requirement that many photons from every

particle are detected, to approach the QP limit it is also necessary that the probability of

each particle exiting the cycling transition (via decay to a “dark” state outside the cycle)

is negligible during detection. If this second condition is not satisfied, so that each particle

scatters enough photons that it is very likely to have been optically pumped into a dark

state, then the SNR is decreased by a factor of
√

2 below the QP limit.

6.4.2 Model of the phase measurement

Analogously to the description in Sec. 2.2.2, consider an ensemble of N particles in an

effective two-level system, in a state of the form

|ψ〉 =
e−iφ| ↑〉 + eiφ| ↓〉√

2
. (6.7)

The relative phase φ is the quantity of interest in this discussion. It can be measured, as

seen previously, by projecting the wavefunction onto an orthonormal basis

{|X〉 ∝ | ↑〉 + | ↓〉, |Y 〉 ∝ | ↑〉 − | ↓〉} (6.8)
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such that |〈X|ψ〉|2 = cos2(φ) and |〈Y |ψ〉|2 = sin2(φ). In the LIF technique, this can be

achieved by driving state-selective transitions, each addressing either |X〉 or |Y 〉, through an

excited state that subsequently decays to a ground state and emits a fluorescence photon.

This light is detected, and the resulting total signals, SX and SY , are associated with each

state. The measured value of the phase, φ̃, is computed from the observed values of SX and

SY . In the absence of optical cycling, the statistical uncertainty of the phase measurement

is σφ̃ = 1
2
√
Nǫ

, where the photon detection efficiency lies in the range 0 < ǫ ≤ 1. Note that

Nǫ is the average number of detected photons; hence, this result is often referred to as the

“photon shot noise limit.” In the ideal case of ǫ = 1, the QP limit σφ̃ = 1
2
√
N

is obtained.

This scaling is derived as a limiting case of our general treatment below, where the effects

of optical cycling are also considered.

We suppose that the phase is projected onto the {|X〉, |Y 〉} basis independently for

each particle. Repeated over the ensemble of particles, the total number of particles NX

projected along |X〉 is drawn from a binomial distribution, NX ∼ B(N, cos2 φ), where x ∼

f(α1, · · · , αk) denotes that the random variable x is drawn from the probability distribution

f parametrized by α1, · · · , αk, and B(ν, ρ) is the binomial distribution for the total number

of successes in a sequence of ν independent trials that each have a probability ρ of success.

Therefore, NX = N cos2 φ and σ2
NX

= N cos2 φ sin2 φ, where x̄ is the expectation value of a

random variable x and σx is its standard deviation over many repetitions of an experiment.

We define the number of photons scattered from the i-th particle to be ni, where a “photon

scatter” denotes laser excitation followed by emission of one spontaneous decay photon,

and define ni = n̄ (the average number of photons scattered per particle) and σni = σn.

Note that these quantities are assumed to be the same for all particles (i.e., independent

of i). We will evaluate n̄ and σn for a realistic model of an optical cycling process in Sec.

6.4.4. We define dij to be a binary variable indexing whether the j-th photon scattered

from the i-th particle is detected. Therefore, dij ∼ B(1, ǫ), and it follows that dij = ǫ

and σ2
dij

= ǫ(1 − ǫ). The gain g of each photoelectron is then drawn from a distribution

with mean G and standard deviation σG. Conventionally, a photodetector’s variance is

characterized by its excess noise factor f ≡ 1 +
σ2

G
G2 . We define gij to be the signal gain of

the j-th photon scattered from the i-th particle if that photon is detected. In the case that
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the j-th photon scattered from the i-th particle is not detected, gij is undefined.

We define the signal of the measurement of a particular quadrature |X〉 or |Y 〉 from the

ensemble, when projecting onto that quadrature, to be the total number of signal electrons

flowing from the photodetector. For example, the signal SX from particles projected along

|X〉 is

SX =
NX
∑

i=1

ni
∑

j=1

dijgij . (6.9)

Explicitly, among N total particles, NX are projected by the excitation light onto the |X〉

state and the rest are projected onto |Y 〉. The i-th particle projected onto |X〉 scatters a

total of ni photons, and we count each photon that is detected (in which case dij = 1),

weighted by the detector gain gij . The right-hand side of Eq. 6.9 depends on φ implicitly

through NX , and we use this dependence to compute φ̃, the measured value of φ. Because

NX , ni, dij , and gij are all statistical quantities, the extracted value φ̃ has a statistical

uncertainty. The QP limit is achieved when the only contribution to uncertainty arises

from NX due to projection onto the {|X〉, |Y 〉} basis.

6.4.3 Calculation of statistical moments

We now turn to the question of how to compute the average phase and uncertainty in the

phase, given the physical model just described. It will be necessary to compute the average

signals SX and SY , as well as the variances σ2
SX

and σ2
SY

in order to propagate uncertainty

to the measured phase.

We can compute SX by repeated application of Wald’s lemma ([242, 243]), E[
∑m
i=1 xi] =

E[m]E[x1], where E[x] ≡ x̄ will prove to be a convenient alternative notation in some of

the long derivations ahead. I will also define the number of detected photons emitted by

the i-th projected molecule to be n(d)
i =

∑ni
j=1 dij . Then
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E[SX ] = E
[

∑NX
i=1

∑ni
j=1 dijgij

]

= E [NX ]E
[

∑n1
j=1 d1jg1j

]

= E [NX ]E

[

∑n
(d)
1
j=1 g1j

]

= E [NX ]E
[

n
(d)
1

]

E [g11]

= E [NX ]E
[

∑n1
j=1 d1j

]

E [g11]

= E [NX ]E [n1]E [d11]E [g11]

= N cos2 φn̄ǫG.

(6.10)

That is, the expected signal from projecting onto the |X〉 state is (as could be anticipated)

simply the product of the average number of particles in |X〉, N cos2 φ, the number of

photons scattered per particle, n̄, the probability of detecting each photon, ǫ, and the

average gain per photoelectron, G.

We compute the variance in SX by repeated use of the law of total variance [244],

Var[a] = E[Var[a|b]] + Var[E[a|b]], where E[a|b] denotes the mean of a conditional on a

fixed value of b and, analogously, Var[a|b] denotes the variance of a conditional on a fixed

value of b. This gives

Var[SX ] = Var
[

∑NX
i=1

∑ni
j=1 dijgij

]

= E[NX ]Var
[

∑n1
j=1 d1jg1j

]

+ Var[NX ]E
[

∑n1
j=1 d1jg1j

]2

= E[NX ]Var

[

∑n
(d)
1
j=1 g1j

]

+ Var[NX ]E

[

∑n
(d)
1
j=1 g1j

]2

= E[NX ]
(

E
[

n
(d)
1

]

Var[g11] + Var
[

n
(d)
1

]

E [g11]2
)

+Var[NX ]E[n1]2E[d11]2E[g11]2

= E[NX ]
(

E [n1]E[d11]Var[g11] + E [g11]2
(

E[n1]Var[d11] + Var[n1]E[d11]2
)

)

+Var[NX ]E[n1]2E[d11]2E[g11]2

= N cos2 φn̄ǫG2
(

f − 1 + 1 − ǫ+ σ2
n
n̄ ǫ+ n̄ǫ sin2 φ

)

= N cos2 φn̄ǫ2G2
(

f
ǫ + σ2

n
n̄ − 1 + n̄ sin2 φ

)

.

(6.11)

The results for SY are identical, with the substitution cos2 φ ↔ sin2 φ. Many atomic clocks

[245–249] and some molecular precision measurement experiments [128, 227] measure both
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SX and SY , while others detect only a single state [96, 111, 122, 132]. In what follows,

we assume the case particular to ACME, namely that both states are probed. We will

examine the case of detecting only one state, under the convenient (but perhaps unrealistic)

assumption that there exists some means of normalizing for variations in N , separately.

In the regime φ = ±π
4 + δφ, where δφ ≪ 1, sensitivity to small changes in phase, δφ, is

maximized. In this case, we define the measured phase deviation δφ̃ by φ̃ = ±π
4 + δφ̃. This

is related to measured quantities via the asymmetry A = SX −SY
SX +SY

= ∓ sin(2δφ̃) ≈ ∓2δφ̃.

When N ≫ 1, the average value of φ̃ computed in this way is equal to the phase φ of the

two-level system, similarly to the case when there is no optical cycling (see Sec. 2.2.2)

The uncertainty in the asymmetry,

σA ≈ 1

N

√

σ2
SX

+ σ2
SY

− 2σ2
SX ,SY

, (6.12)

can be computed to leading order in δφ from σSX
, σSY

, and the covariance σ2
SX ,SY

=

SXSY − SX SY using standard error propagation [250]. We relate σA to the uncertainty in

the measured phase by σA = 2σφ̃. This relationship defines the statistical uncertainty in φ̃,

the measured value of φ, for the protocol described here. The covariance, σ2
SX ,SY

= −N
4 n̄

2ǫ2,

can be calculated directly using the same methods already described. The calculation is

fairly complicated, so it is instructive to work it out explicitly. We have already calculated

SX and SY . The first term in the expression for the covariance, SXSY , can be computed

by Wald’s equation after the appropriate grouping of terms:

E[SXSY ] = E[
∑NX
i=1

∑ni
j=1

∑NY
k=1

∑nk
l=1 dijgijdklgkl]

= E[α11 + · · · + αNXNY
],

(6.13)

where αij =
∑ni
j=1

∑nk
l=1 dijgijdklgkl. Then Wald’s equation gives

E[SXSY ] = E[NXNY ]E[α11]. (6.14)

The second factor is simple:
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E[α11] = E





n1
∑

j=1

n1
∑

l=1

d1jg1jd1lg1l



 . (6.15)

Since l and j are independent, this expression reduces to E[α11] = E[
∑n1
j=1 d1jg1j ]

2 =

n̄2ǫ2G2, where the RHS is obtained by repeatedly applying Wald’s lemma just as we saw

when calculating E[SX ].

To calculate E[NXNY ], we note that NY = N − NX , where N is the total number of

particles. Then E[NXNY ] = NE[NX ] − E[N2
X ]. We already know that E[NX ] = N cos2 φ,

while the second term can be obtained from Var[NX ] = E[N2
X ] −E[NX ]2 = N cos2 φ sin2 φ.

Combining these expressions and simplifying, we find

cov(SX , SY ) = −N cos2 φ sin2 φn̄2ǫ2G2. (6.16)

This result can be understood as follows: the photon scattering and detection processes for

particles projected onto |X〉 and |Y 〉 are independent, so the covariance between signals

SX and SY only arises from quantum projection. In the simplest case of perfectly efficient,

noise-free detection and photon scattering, e.g., ǫ = 1, n̄ = 1, σn = 0, and G = 1, the

quantum projection noise leads to signal variances σ2
SX

= σ2
SY

= N
4 . The covariance is

negative because a larger number of particles projected onto |X〉 is associated with a smaller

number of particles projected onto |Y 〉. The additional factor of n̄2ǫ2G2 for the general case

accounts for the fact that both signals SX and SY are scaled by n̄ǫG when on average n̄

photons are scattered per particle, a proportion ǫ of those photons are detected, and each

detected photoelectron is amplified by a factor of G.

The uncertainty in the measured phase, computed using the procedure just described,

has the form

σφ̃ =
1

2
√
N

√
F, (6.17)

where we have defined the “excess noise factor” F given in this phase regime by

F = 1 +
1

n̄

(

f

ǫ
− 1

)

+
σ2
n

n̄2
. (6.18)
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Direct computation shows that the definition of the measured phase φ̃ considered here

saturates the Cramer-Rao bound [251], which specifies a lower bound on the uncertainty

of a statistical quantity that can be computed from measured statistical variables, when

N ≫ 1, provided SX and SY are distributed as bivariate normal variables in this case13.

In other words, no alternative definition of φ̃ computed from SX and SY would give an

unbiased estimator of φ with smaller measurement uncertainty σφ̃. This is a nice sanity

check because it assures us that we are not simply choosing an unwise definition of the

measured phase, φ̃, that under-utilizes the information contained in SX and SY for the

model considered here.

It is instructive to evaluate Eq. 6.18 in some simple limiting cases. For example, consider

the case when exactly one photon is scattered per particle so that n̄ = 1 and σn = 0. (This is

typical for experiments with molecules, where optical excitation essentially always leads to

decay into a dark state.) In this case, F = 1
ǫ and the uncertainty in the phase measurement

is σφ̃ = 1
2
√
Nǫ

, as stated previously. Alternatively, as n̄ → ∞, F → 1 +
(σn
n̄

)2. This is in

exact analogy with the excess noise of a photodetector whose average gain is n̄ and whose

variance in gain is σ2
n [252]. By inspection, the ideal result of F → 1 can be achieved only

if σn
n̄ → 0, and either ǫ/f → 1 or n̄ → ∞.

6.4.4 Model of optical cycling process

The results up to now, and in particular Eq. 6.18, do not depend on any particular model

of the optical cycling process. We now consider a realistic model of optical cycling to

compute n̄ and σ2
n in terms of more practical quantities. We define the branching fraction

to dark states, which are lost from the optical cycle, to be bℓ. We assume that each particle

interacts with the excitation laser light for a time T , during which the scattering rate of a

particle in the optical cycle is r. Therefore, an average of rT photons would be scattered

in the absence of decay to dark states, i.e. when bℓ = 0. (All of our results hold for a

time-dependent scattering rate r(t), with the substitution rT → ∫

r(t)dt.) Note that in

13. In particular, I have shown that if NX and NY were Poisson-distributed rather than binomially
distributed, then the Cramer-Rao bound would be saturated, but I have not gone through the derivation
for our exact case. However, I find it extremely implausible that there is a significant difference between the
Poisson-distributed and binomial-distributed cases for NX and NY .
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the limit rT → ∞, 1/bℓ photons are scattered per particle on average. Recall that the

number of photons scattered from the i-th particle, when projected to a given state, is ni.

We define the probability that a particle emits exactly ni photons to be P (ni; rT, bℓ). This

probability distribution can be computed by first ignoring the decay to dark states. For the

case where bℓ = 0, the number of photons emitted in time T follows a Poisson distribution

with average number of scattered photons rT . For the more general case where bℓ > 0, we

assign a binary label to each photon depending on whether it is associated with a decay to a

dark state. Each decay is characterized by a Bernoulli process, and we use the conventional

labels of “successful” (corresponding to decay to an optical cycling state) and “unsuccessful”

(corresponding to decay to a dark state) for each outcome.

For concreteness, we have assumed here that “unsuccessful” decays, i.e., those that

populate dark states, emit photons with the same detection probability as all successful

decays.14 Before we provide the general formula for P (ni; rT, bℓ), let’s consider a specific

example. For instance, P (ni = 3; rT, bℓ) is the probability that there are exactly three

photons scattered from a particle subject to scattering rate r for a total interaction time

T , when the probability of each decay leading to a dark state is bℓ. We will denote a

sequence of events with a series of symbols, where X denotes a successful event (decay to

a bright state), ✘ denotes an unsuccessful event (decay to a dark state), and � denotes

either a successful or unsuccessful event. For example, two successful events followed by

an unsuccessful event is denoted by XX✘, and the probability of exactly this sequence of

events occurring is denoted by P (XX✘; rT, bℓ). Then

P (ni = 3; rT, bℓ) = P (XX�; rT, bℓ)

+P (XX✘�; rT, bℓ)

+P (XX✘��; rT, bℓ)

+ · · · .

(6.19)

In detail, we sum the probabilities for mutually exclusive scenarios. First, there can be

exactly 3 physical decays (top line: two decays to the bright state followed by a decay

14. The opposite case, in which decays to dark states are always undetected, can be worked out with the
same approach and leads to similar conclusions, as described below.
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to either a bright or dark state). Alternatively, there can be exactly four events in the

Poisson process such that the first two decays are to bright states and the third is to a dark

state (second line); the fourth “event” does not physically occur, regardless of whether it’s

labelled successful or unsuccessful, because there can be no physical decays once a particle

has occupied a dark state. Next, we consider the scenario in which there are exactly five

events in the Poisson process such that the first two decays are to bright states and the

third is to a dark state (third line), with any possibilities for the fourth and fifth event. We

continue in this way for every possible number of events in the Poisson process greater than

or equal to three.

With this example in mind, we note that in general, P (ni; rT, bℓ) is the probability

that (I) there are exactly ni events in the Poisson process such that the first ni − 1 are

“successful” (and the last may be successful or unsuccessful; see the top line in the expression

for P (ni = 3; rT, bℓ) above), or (II) there are more than ni events such that the first ni − 1

are successful and the ni-th is unsuccessful (see the second and lower lines in the expression

for P (ni = 3; rT, bℓ) above).

It is useful to note that the number of decays in the case that bℓ → 0 is given by the

Poisson distribution, P (ni; rT, 0) = e−rT (rT )ni/ni!. Now we will consider P (ni; rT, bℓ) for

general values of bℓ. For the simplest case in which no decays occur, ni = 0, we can set

bℓ = 0 without loss of generality since then the branching fraction to dark states cannot be

relevant. Thus P (ni = 0; rT, bℓ) = P (ni = 0; rT, 0) = e−rT . That is, the probability that a

particle doesn’t scatter any photons exponentially decreases with the product of scattering

rate and time, since any excited-state population exponentially decays in time.

For ni > 0, condition (I) contributes

P (ni; rT, 0)(1 − bℓ)
ni−1 = (1 − bℓ)

ni−1e−rT (rT )ni

ni!
. (6.20)

Explicitly, the probability that exactly ni photons are emitted and all are detected is the

product of the probability that exactly ni photons are emitted, and the probability that the

first ni − 1 decays each independently lead back to the bright state (recall that we assume

that decays to both the bright and dark states are detected with the same probability).

267



Condition (II) contributes

∑∞
k=1 P (ni + k; rT, 0)(1 − bℓ)

ni−1bℓ = e−rT bℓ(1 − bℓ)
ni−1∑∞

k=1
(rT )ni+k

(ni+k)!

= e−rT bℓ(1 − bℓ)
ni−1 e

rT γ(ni+1,rT )
ni!

= bℓ(1 − bℓ)
ni−1 γ(ni+1,rT )

ni!
,

(6.21)

where γ(ni + 1, rT ) =
∫ rT

0 dxxnie−x is a lower incomplete gamma function. The sum is

computed (line 1 to line 2) via Mathematica, allowing us to re-express the result in terms of

an integral with no closed form15. To understand why the LHS expresses the contribution

to P (ni; rT, bℓ) due to condition (II), consider a single term with a fixed value of k. The

probability that exactly ni + k photons are emitted in the Poisson process such that the

first ni − 1 lead to the bright state and the ni-th leads to a dark state is the product of

the the probability that exactly ni + k photons are emitted, the probability that the first

ni− 1 decays lead back to the bright state, and the probability that the next decay leads to

a dark state. It is important to remember that the k events after the decay to a dark state

do not physically occur; they are merely artifacts that allow us to calculate P (ni; rT, bℓ),

but do not correspond to physical photon emissions. In the example of Eq. 6.19, they are

represented by � symbols in lines two and three, and arise from the Poisson process for

photon emissions that we consider before labeling decays as successful or unsuccessful.

Therefore, the probability that more than one decay occurs, combining conditions (I)

and (II), is

P (ni > 0; rT, bℓ) =
e−rT

1 − bℓ

[rT (1 − bℓ)]
ni

ni!
+

bℓ
1 − bℓ

∫ rT

0
dx e−x [x(1 − bℓ)]

ni

ni!
. (6.22)

In order to compute n̄ and σ2
n, we need to compute the central moments:

n̄i =
∞
∑

ni=0

niP (ni; rT, bℓ), (6.23)

15. A sensible person may wonder whether it’s really much better to have a non-analytic result in the
form of this integral rather than in the form of a sum. However, the fact that this sum can be re-expressed
as an integral is the first of two computational miracles that will allow us to get an analytical result for the
excess noise factor F (rT, bℓ, ǫ/f).
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n2
i =

∞
∑

ni=0

n2
iP (ni; rT, bℓ). (6.24)

First, the mean:

n̄ =
∑∞
ni=0 niP (ni; rT, bℓ)

= e−rT

1−bℓ

∑∞
ni=1

[rT (1−bℓ)]ni

ni!
ni + bℓ

1−bℓ

∫ rT
0 dx e−x∑∞

ni=1
[x(1−bℓ)]ni

ni!
ni

= e−rT

1−bℓ
erT e−rTbℓrT (1 − bℓ) + bℓ

1−bℓ

∫ rT
0 dx e−xexe−xbℓx(1 − bℓ)

= rTe−rTbℓ + bℓ
∫ rT

0 dx e−xbℓx

= rTe−rTbℓ + 1−e−rT bℓ (rTbℓ+1)
bℓ

= 1−e−rT bℓ

bℓ
.

(6.25)

Let’s take the steps slowly: in the second line, we have written out P (ni; rT, bℓ) explicitly

and pulled factors out of the sum that are independent of ni. In the second term, we have

interchanged the order of the summation and integration. We then use the closed form

for the sums (line 3), which allows the integrand in the second term to be simplified, and

thus the integral to be completed16. Exactly analogous steps allows us to compute n2
i and

therefore σ2
n = n2

i − (n̄i)
2. The result is

σ2
n =

1 − bℓ + e−rTbℓbℓ(2rTbℓ − 2rT + 1) − e−2rTbℓ

b2
ℓ

. (6.26)

Recall that in order to get this result, we have assumed that the decays to dark states

are detected at the same rate as decays to bright states. If we instead assume that decays

to dark states are never observed, then the average number of observable photons emitted

per particle is reduced, n̄i → n̄ibℓ, and likewise n2
i → n2

i bℓ. However, note that this implies

σ2
n → bℓ(n

2
i −bℓ(n̄i)2)✚✚∝σ2

n. As a result, there is no simple substitution to express subsequent

results in the case that decays to dark states are never observed. However, that case can

be worked out using the same methods, and all results are qualitatively similar. In all

16. The fact that the integral of the sum has a closed form, while the integral of the summand does not,
is the second miracle allowing us to get an analytic result for F –a priori, we don’t have the right to expect
any such thing.
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that follows, we will only consider the case that decays to dark states and bright states are

detected with equal likelihood.

6.4.5 Excess noise factor in general case

We now plug in the expressions for n̄ and σ2
n to Eq. 6.18 and, after quite a bit of simplifying

algebra, find

F = 1 +
1

1 − e−rTbℓ

(

bℓ
ǫ/f

+
1 − 2bℓ + 2bℓe

−rTbℓ(1 − rT (1 − bℓ)) − e−2rTbℓ

1 − e−rTbℓ

)

. (6.27)

This is the fundamental result of this section: the excess noise factor in Eq. 6.27 allows

us to compute the uncertainty in the measured phase, σφ̃ = 1
2
√
N

√
F , as a function of the

branching fraction to dark states bℓ, photon detection efficiency ǫ, photodetector excess

noise factor f , and combination of scattering rate and scattering time rT . The behavior of

the SNR (proportional to 1/
√
F ) arising from Eq. 6.27 is illustrated in Fig. 6.8.

To understand the implications of this result, we consider several special cases, summa-

rized in Table 6.3. We first consider the simple case when cycling is allowed to proceed until

all particles decay to dark states, i.e., bℓrT → ∞. We refer to this as the case of “cycling

to completion.” In this case, for the generically applicable regime ǫ
f ≤ 1

2 we find F ≥ 2,

even as the transition becomes perfectly closed (bℓ → 0). We can understand this result

intuitively as follows. As the optical cycling proceeds, the number of particles that exit

the optical cycle after each photon scatter is proportional to the number of particles that

are currently in the optical cycle, dP
dni

∝ P . Hence, we expect P (ni; rT → ∞, bℓ) ∝ e−αni

for some characteristic constant α. The width σn of this exponential distribution is given

by the mean n̄; that is, σn ≈ n̄. Therefore, we should expect that cycling to completion

reduces the SNR by a factor of
√
F =

√

1 + (σn/n̄)2 →
√

2 compared to the ideal case of

F = 1, which requires σn
n̄ = 0.

In a bit more detail, we can derive P (ni; rT → ∞, bℓ) exactly and see that this heuristic

argument holds. The probability that the particle lands in a dark state after exactly ni

photons are emitted, provided cycling proceeds arbitrarily long, is P (ni; rT → ∞, bℓ) =
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Figure 6.8: 1/
√
F , the SNR resulting from Eq. 6.17, normalized to the ideal case of the QP

limit (F = 1). This plot assumes an ambitious value of ǫ/f = 0.125, which would result from
≈ 50% optical collection efficiency, ≈ 25% photodetector quantum efficiency, and negligible
photodetector excess noise (f ≈ 1). Note that, without optical cycling, such a configuration
would represent an improvement in the signal-to-noise ratio over ACME II of a factor of
≈ 1.8. When few photons per particle can be detected, i.e., when (ǫ/f)/bℓ ≪ 1 (far left
of plot), cycling to very deep completion (bℓrT ≫ 1, top of plot) does not significantly
affect the SNR. Even when one photon per particle can be detected on average, i.e., when
(ǫ/f)/bℓ = 1 (dashed red line), the SNR never exceeds roughly 60% of its ideal value. By
further closing the optical cycle, i.e. such that (ǫ/f)/bℓ ≫ 1 (right of dashed red line), the
SNR can be improved to near the optimal value given by the QP limit. However, to reach
this optimal regime, the number of photons that would be scattered in the absence of dark
states, rT , must be small compared to the average number that can be scattered before a
particle exits the optical cycle, 1/bℓ. For example, with 1/bℓ = 1, 000 (green dashed line)
and rT = 100 so that bℓrT = 0.1 (lower circle), the SNR is more than 30% larger than in
the case when rT = 10, 000 and bℓrT = 10 (upper circle). Cycling through the I electronic
state in ThO is expected to yield bℓ = 0.09, and thus for the assumed value of ǫ/f we would
have (ǫ/f)/bℓ ≈ 1.4, where the SNR behaves qualitatively similarly as along the dashed red
line.
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(1−bℓ)ni−1bℓ. We can find closed forms for n̄ =
∑∞
ni=1 P (ni; rT → ∞, bℓ)ni and analogously

for n2 using Mathematica to see that, in this case, n̄ = 1/bℓ and σn =
√

1 − bℓ/bℓ. We can

understand the full distribution P (ni; rT →, bℓ) better by rewriting it as P (ni; rT →, bℓ) =

1
n̄−1 exp [− ln[n̄/(n̄ − 1)]ni] = A exp(−α × ni), so the probability of scattering ni photons

before being lost to a dark state is given as a decaying exponential in ni as anticipated,

with decay rate α = ln[n̄/(n̄ − 1)] and normalization constant A = (n̄− 1)−1.

Surprisingly, this reduction in SNR can be partially recovered for an imperfectly closed

optical cycle, by choosing a finite cycling time, rT < ∞, to minimize σφ̃. The best limiting

case, as found from Eq. 6.27, preserves the condition that many photons are detected per

particle, rT ǫ/f ≫ 1, but additionally requires that the probability of decaying to a dark

state remains small, rTbℓ ≪ 1. In this case, photon emission is approximately a Poisson

process for which
(σn
n̄

)2 ≈ 1
rT ≪ 1, and the excess noise factor, F , does not have a significant

contribution from the variation in scattered photon number, σn. The optimal value of rT

for a finite proportion of decays to dark states, bℓ, and detection efficiency, ǫ, lies in the

intermediate regime and can be computed numerically.

A special case of “cycling to completion,” which must be considered separately, occurs

when every particle scatters exactly one photon, corresponding to parameter values bℓ = 1

and rT ≫ 1 so that n̄ = 1 and σn = 0. As we have already seen, in this case there is no

contribution to the excess noise arising from variation in the scattered photon number, and

hence the SNR is limited only by photon shot noise: F = f
ǫ .

In atomic physics experiments with essentially completely closed optical cycles, bℓ ≈ 0,

the limit bℓrT → ∞ is not obtained even for very long cycling times where rT ≫ 1. Instead,

in this case bℓrT → 0 and hence F → 1 + f
rT ǫ , which approaches unity as the probability

to detect a photon from each particle becomes large, ǫ
f rT ≫ 1. Therefore, the reduction in

the SNR associated with the distribution of scattered photons does not occur in this limit

of a completely closed optical cycle.

6.4.6 Extensions to alternative situations

One may also consider how the additional noise due to optical cycling combines with other

noise sources in the detection process. For example, similar derivations can be performed
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Condition Sub-conditon F

1a bℓrT → ∞ 2 + bℓ(
f
ǫ − 2)

1b bℓrT → ∞ ǫ/f ≤ 0.5 ≥ 2

2a bℓrT → 0 1 + f
rT ǫ + 1

2bℓ(
f
ǫ − 2)

2b bℓrT → 0 ǫ
f rT → ∞ 1

3a bℓ → 1 f
ǫ

1
1−e−rT

3b bℓ → 1 rT → ∞ f
ǫ

Table 6.3: The excess noise factor F in some special cases. (1a) All particles are lost to
dark states during cycling. (1b) With all particles lost and realistic detection efficiency,
ǫ/f ≤ 0.5, F ≥ 2. (2a) No particles are lost to dark states. (2b) No particles are lost, but
many photons per particle are detected. The QP limit is reached. (3a) No more than one
photon can be scattered per particle. (3b) Exactly one photon is scattered per particle and
the photon shot noise limit is reached.

assuming a statistical distribution of N or φ to obtain qualitatively similar but more cum-

bersome results. I did not manage to glean any insights, beyond those already described,

from these more involved calculations and omit them here.

We now address the question of how the excess noise factor F differs when the signal

is only detected from one state, rather than from both X and Y . This could be important

because several experiments of interest detect only a single state, assumed here to be |X〉

without loss of generality [96, 111, 122, 132]. In such experiments, the asymmetry A =

SX−SY
SX+SY

cannot be constructed and it is necessary to measure the phase φ in a different way.

Following the standard approach, we use Eq. 6.10 to define φ̃ by SX = N cos2 φ̃n̄ǫG. We

assume once again the regime φ = ±π
4 + δφ, with δφ ≪ 1, and as before define φ̃ = ±π

4 + δφ̃

so that SX = Nn̄ǫG(1
2 − δφ̃). The prefactor Nn̄ǫG must be calibrated independently. For

example, suppose one applies a known change ∆φ to the phase and measures the contrast

C = dSX/d(∆φ), with C̄ = −Nn̄ǫG. We assume that the uncertainty of this calibration is

small, so that Nn̄ǫG may be treated as a known parameter. In the context of any given

experiment, this assumption may be quite dubious: in particular, the number of particles

N can often fluctuate between the calibration and the phase measurement steps of an

experimental protocol. Nevertheless, we will proceed with this assumption to understand

the qualitative distinction between observing one vs. two states in the phase measurement.

We find that the uncertainty in the measured phase still has the form σφ̃ = 1
2
√
N

√
F under

these assumptions, but with a larger excess noise factor:
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F = 1 +
2

n̄

(

f

ǫ
− 1

)

+ 2
σ2
n

n̄2
. (6.28)

As with the case when both states are measured, this definition of the measured phase φ̃

saturates the Cramer-Rao bound provided N ≫ 1. That is, no alternative definition of φ̃

computed from only SX and the calibration factor Nn̄ǫG would give an unbiased estimator

of φ with smaller measurement uncertainty σφ̃, reassuring us that the excess noise we’ve

computed does not simply arise due to a poor choice of how to calculate φ̃.

Therefore, using the results for n̄ and σn applicable to the same optical cycling process

considered previously, we find that when only a single state |X〉 is detected, the excess noise

factor takes the form

F = 1 +
2

1 − e−bℓrT

(

bℓf

ǫ
+

1 − 2bℓ + 2bℓe
−bℓrT (1 − rT (1 − bℓ)) − e−2bℓrT

1 − e−bℓrT

)

. (6.29)

Comparing to Eq. 6.27, we see that second term in the expression for F is simply

inflated by a factor of 2 compared to the case where both states can be detected.

6.4.7 Implications for ACME

Let us finally zoom back in to the problem at hand: how much will optical cycling improve

the SNR in a future ACME measurement? In ACME II, we have ǫ ≈ 0.05 due to an optical

collection efficiency of ≈ 20% and PMT quantum efficiency of ≈ 25%. Further, the PMTs

have an excess noise factor of f ≈ 1.25 (based on measurements by Cristian Panda; see Sec.

3.2.1), so ǫ/f ≈ 0.04. Thus the excess noise factor is F = f
ǫ ≈ 25 in ACME II. Therefore,

by a combination of optical cycling detection and improved photon detection efficiency, we

could hope for at most a factor of 25 improvement in effective molecular flux (in terms of

the effect on the SNR).17

17. This treatment relies on the assumption that in ACME II, each molecule emits a photon with near-unit
probability. This is valid: we have estimated from measurements that with 65 mW of power (beam waists
wx ≈ 2 mm and wy ≈ 4 cm, transition dipole moment d ≈ 1.8 D [174]), approximately 99% of the molecules
in the molecular beam fluoresce [253]. The typical probe laser power in the ACME II data set was slightly
higher than this level, Pprobe ≈ 75 mW (based on continuously logged measurements with a photodiode).
Note that the refinement laser power was typically much higher, Pref ≈ 620 mW, in order to ensure efficient
refinement of the STIRAP-prepared phase, Aref ≫ 1.
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Figure 6.9: Gain in SNR between ACME II and ACME III, via a cycling scheme on X ↔ I,
where bℓ ≈ 0.09. Distinct curves represent different possible values of ǫ/f that may be
applicable to ACME III, with the lowest curve showing no improvement over the ACME
II photon detection efficieincy ǫ or PMT excess noise factor f . We see that the optimal
combination of scattering rate and scattering time, rT , is typically finite such that not all
molecules decay to dark states (and this effect is more pronounced for large ǫ/f). With
no improvement in photon detection, optical cycling (average of 11 scattered photons per
molecule) yields an increase in SNR by a factor of ≈2.5. On the other hand, a factor of 6
improvement in photon detection, ǫ/f → 0.24 (cyan curve), together with optical cycling,
yields a total increase in SNR of ≈ 3.7× (i.e., using optical cycling represents a factor of
≈ 1.5 improvement in this case over a configuration with the same improved detection but
no cycling, which alone gives an improvement in SNR of ≈ 2.5×). In all cases, as rT → 0
(no photons are scattered), the SNR also approaches zero. For bℓ = 0.09, on average one
photon per molecule is scattered when rT ≈ 1.05. For this value of rT , the improvement in
SNR, compared to ACME II, is unity for ǫ/f = 0.04 and larger than unity for ǫ/f > 0.04,
due to the improved detection efficiency (since approximately one photon is scattered per
molecule in ACME II).
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The most promising optical cycling transition is X(v = 0) ↔ I(v = 0), which has a

branching ratio to dark states of bℓ ≈ 0.09[174]. Ongoing work to implement optical cycling

detection with this transition is being led by Daniel Ang. Here, I will assume that no

repumping lasers are implemented to address loss to other electronic states (dominantly H

and Q) or higher vibrational levels.

The gain in effective molecular flux is Gcyc = FACME II/FACME III, where FACME II ≈ 25

and FACME III is the excess noise factor that will be obtained in ACME III. As usual,

the improvement in the SNR scales as σφ̃ ∝ G
−1/2
cyc . We see in Fig. 6.9 that the effective

molecular gain from cycling with bℓ = 0.09 (≈ 11 scattered photons per molecule) is Gcyc ≈ 6

provided the effective photon detection efficiency ǫ/f is not improved.

On the other hand, we may perform cycling detection in a separate vacuum chamber

downstream of the interaction region, where far more efficient optical collection is possible

(e.g., collecting closer to ≈ 75% of photons rather than ≈ 25%). Further, as we saw

in Sec. 6.3, it may be possible to use silicon photomultipliers with ǫdet./f ≈ 0.4 rather

than ǫdet./f ≈ 0.2 as is the case with the PMTs used in ACME II. Therefore, suppose

rather ambitiously that ǫ/f → 0.24 in ACME III. Then we see in Fig. 6.9 that the effective

molecular flux can be increased by a factor of ≈ 14 with optical cycling detection, compared

to ACME II. While this would be an extremely significant gain, note that in this case

cycling itself contributes only a factor of ≈ 2 effective flux beyond the level achieved simply

by improving the effective detection efficiency.

This trade-off is generic: the better the effective detection efficiency ǫ/f , the less benefi-

cial is using optical cycling detection compared to scattering a single photon per molecule.

Conversely, using optical cycling detection diminishes the marginal benefit of a fixed in-

crease in ǫ/f . Critically, we cannot compute the overall gain in ACME III vs. ACME II

by simply multiplying the gain from cycling vs. not cycling, and the gain from improved

vs. unimproved detection. The actual marginal benefit of one upgrade, keeping the other

upgrades fixed, should be well-understood to inform how many resources are devoted to

getting either optical cycling or an improved detection technology to work.
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6.5 Outlook

In this chapter, I’ve considered only a few possible improvements to the ACME apparatus to

achieve greater statistical sensitivity to de: an electrostatic or magnetostatic molecular lens,

modifications to the molecular beam source “skimmer” collimating aperture, an alternative

photodetector technology, and optical cycling detection. These broadly cover the candidates

for improving statistical sensitivity in the next-generation ACME measurement, although

a few other low-priority ideas also exist (e.g., implementing a “load lock” to the molecular

beam source to allow replacement of used targets before their molecular yields significantly

degrade)18. One other upgrade to the statistical sensitivity, which has already been imple-

mented by Cole Meisenhelder and Cristian Panda, is eliminating the source of additional

noise as described in Sec. 4.15.3. This contributes an improved statistical sensitivity to de

by a factor of ≈ 1.7 compared to ACME II.

In addition to the improvements in statistical sensitivity, we must suppress all known

systematic error contributions to a level below the target ACME III statistical sensitivity.

To this end, it will be advantageous to redesign the magnetic shielding in the interaction

region, which we have observed to have undesirably large residual magnetization (∼ 100µG),

which is not removed by degaussing and changes significantly when the apparatus is jostled.

Because we have observed systematic errors proportional to residual magnetic field gradients

in ACME II, it will be important to have better control over residual fields in ACME III

than previously anticipated. Methods to improve the magnetic shielding design are currently

being explored by James Chow.

Furthermore, it will be necessary to suppress systematic errors arising from birefringence

gradients together with Enr. In ACME I, these effects were suppressed in part by aligning

the state preparation laser polarization with the birefringence axis of the vacuum windows

and electric field plates; however, in ACME II we cannot do this because the refinement

laser polarization must match the STIRAP-prepared angular momentum alignment in order

18. To be clear, the skimmer modification is itself one of these low-priority ideas. However, at least
one of the molecular lens or optical cycling detection will almost certainly have to be operational before
an additional measurement is made. These projects are the primary focus of Xing Wu and Daniel Ang,
respectively.
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to suppress the P Ñ Ẽ systematic slope, dωÑ Ẽ/dP Ñ Ẽ . In turn, the STIRAP-prepared angular

momentum alignment cannot be made to match the birefringence axis because the STIRAP

beams travel along ŷ, constraining the projection of the effective 1090 nm laser polarization

in the xy-plane. If, as was the case in ACME I, all lasers were to propagate along ±ẑ, then

the refinement laser polarization could generically be aligned with the optical birefringence

axis in order to suppress the Enr systematic error. Cole Meisenhelder is currently exploring

options to perform STIRAP with an alternative intermediate state, which could allow laser

powers sufficiently low to be suitable for propagation through the field plates.

With these anticipated upgrades to the statistical sensitivity and systematic error con-

trol, up to an order-of-magnitude additional improvement in sensitivity to de may be achiev-

able using the ACME beam of ThO molecules in the next five years, probing even deeper

into high-mass and small-CP-violation regions of the parameter space of theories beyond

the Standard Model.
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Appendix A

Calculations with the spherical

basis

This is intended as a handy reference for the definition of the spherical basis and useful

identities, including some discussion of the composition of multiple spherical tensors and

the correspondence between higher-rank tensors in spherical and cartesian bases. These

results have been useful in various molecular calculations, especially for systematic error

models. The reader is encouraged to double-check all identities before using them, for

understanding if not assurance of accuracy.

Relationship to cartesian vectors

Definitions of spherical basis. See, e.g., [254, Sec. 4.2.1] Sec. 8.1.

û± = ∓ 1√
2
(x̂± i ŷ)

û0 = ẑ
(A.1)

x̂ = 1√
2
(û− − û+)

ŷ = i√
2
(û− + û+)

ẑ = û0

(A.2)
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Conjugation

û∗
± = −û∓

û∗
0 = û0

(A.3)

ûq · û∗
q′ = δqq′ (A.4)

Components

Defining vq = ~v · ûq, we have the expansion

~v = v−û∗
− + v+û

∗
+ + v0û0

= −v−û+ − v+û− + v−û0.
(A.5)

vx = 1√
2
(v− − v+)

vy = i√
2
(v− + v+)

vz = v0

(A.6)

v± = ∓ 1√
2
(vx ± ivy)

v0 = vz

(A.7)

For real cartesian components vx, vy, vz:

v∗
± = −v∓

v∗
0 = v0

(A.8)

For real spherical components v±, v0:

v∗
x = +vx

v∗
y = −vy
v∗
z = vz

(A.9)

Identities

~a ·~b = −a−b+ − a+b− + a0b0 = (−1)qaqb−q (A.10)
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~v∗ = v∗
−û− + v∗

+û+ + v∗
0û0

= −v∗
−û

∗
+ − v∗

+û
∗
− + v∗

0û0

(A.11)

~v∗ · ~w = +v∗
−w− + v∗

+w+ + v∗
0w0 (A.12)

~v∗ · ~v = |v−|2 + |v+ |2 + |v0|2 (A.13)

(~a×~b)± = ±i(a0b± − b0a±) (A.14)

(~a×~b)0 = i(a−b+ − a+b−) (A.15)

û± · ~a = ∓iû± · (û0 × ~a) (A.16)

Application to E1 transitions

We most often use the spherical basis to evaluate electric dipole transitions, which involve a

perturbing Hamiltonian of the form ~ǫ ·~r. We would like to express ~r in terms of components

of a spherical tensor T (1)
q , where I’ll drop the rank-1 superscript for convenience. The

spherical tensor components are defined to correspond to spherical harmonics Y k
q as

T0 ≡ r

√

4π

3
Y 1

0 = z (A.17)

T− ≡ r

√

4π

3
Y 1

− =
x− iy√

2
(A.18)

T+ ≡ r

√

4π

3
Y 1

+ = −x+ iy√
2
. (A.19)

We can solve for x = 1√
2
(T− − T+) and y = i√

2
(T− + T+). Note that rq = Tq are
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equivalent notations. Then

~r = −T−û+ − T+û− + T0û0. (A.20)

Therefore, E1 transitions involve Hamiltonian terms proportional to

~ǫ · ~r = −ǫ−T+ − ǫ+T− + ǫ0T0 (A.21)

~ǫ∗ · ~r = +ǫ∗+T+ + ǫ∗−T− + ǫ∗0T0, (A.22)

where ~ǫ∗ · ~r is the appropriate Hamiltonian for an absorbed, rather than emitted, photon

in an E1 transition. For example, if ǫ+ = 1 and ǫ0 = ǫ− = 0, then the light is σ+-polarized

and an absorbed photon drives states to higher angular momentum projections along the

z-axis (T+ is the relevant operator), while emitted photons drive to states of lower angular

momentum projection (T− is the relevant operator). For linearly polarized light, ~ǫ = ~ǫ∗, so

the distinction is irrelevant.

Composition of spherical tensors

Spherical tensors can be combined using Clebsch-Gordan coefficients:

T kq =
∑

q1,q2

〈k1k2; q1q2|kq〉Ak1
q1
Bk2
q2
. (A.23)

Thus two rank-1 tensors can be combined to form a rank-2 tensor, a vector, and a scalar.

When combining more than two vectors, we can get multiple resulting tensors of the same

rank. For example, when combining three vectors, we first take the tensor product of two

vectors to obtain tensors of rank 0, 1, and 2. We then take the tensor product of each of

these with the remaining vector, producing tensors of rank {1}, {0, 1, 2}, and {1, 2, 3}, for

a total of one scalar, three vectors, two rank-2 tensors, and one rank-3 tensor. Together, it

can be checked that these contain the correct number of independent components. Many

useful identities are worked out in [255, Sec. 3.2].

Some useful expressions apply for rank-2 Cartesian tensors Tik (i, k = x, y, z). From
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[255, Sec. 3.2.2]:

Tik = Eδik +Aik + Sik

E = Tii/3

Aik = (Tik − Tki)/2

Sik = (Tik + Tki)/2 − δikTjj/3

(A.24)

Then the spherical components are

T00 = E

T 1
0 = Axy

T 1
±1 = ∓(Ayz ± iAzx)/

√
2

T 2
0 = Szz

T 2
±1 = ∓

√

2/3(Szx ± iSzy)

T 2
±2 =

√

1/6(Sxx − Syy ± 2iSxy)

(A.25)

One must be careful when combining tensors in the special case that multiple tensors

are identical. Some light is shed on this in the lecture notes [256]. The appropriate tensor

products of spherical vectors involving no spins or differential operators are given by [255,

Sec. 3.2]

{· · · {{V ⊗ V }l2 ⊗ V }l3 · · · ⊗ V }lnmn =

√

4π

2ln + 1
|V |nYlnmn(θ, φ)Πn

i=2C
li0
10li−10, (A.26)

where C lml1m1l2m2
is a Clebsch-Gordan coefficient. In its simplest form, this is the familiar

result that products of position vectors correspond to spherical harmonic operators.
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Appendix B

Further details of rotational cooling

In Sec. 2.6, we considered a fairly detailed model of rotational cooling and described the

experimental performance of our scheme. Here, I describe more detailed considerations,

especially the power requirements and optimal geometry.

B.1 Power requirements of rotational cooling

We have previously assumed that optical pumping is driven to saturation during rotational

cooling. However, we are actually power-limited, reducing the optical pumping efficiency

slightly. We use HL6750MG diodes from Thorlabs, which are specified for 50 mW output

power. This power is then attenuated through an optical isolator (∼ 10% loss) and a series

of optics including two beam splitters (to couple to the wavemeter and locking cavity), so

that an additional ∼ 10% is lost. We typically have ∼ 65% coupling into a PM fiber (but

sometimes only 50% for diodes with very bad spatial modes and no more than 80% for

diodes with truly extraordinary spatial modes). Thus, we have up to ∼ 25 mW of power

in the rotational cooling region. We often operate at lower diode currents, extending the

diode lifetime, so that we only get ∼ 12 − 15 mW coupled through the fiber.

B.1.1 Optical setup

In order to use our available power as efficiently as possible, we optimize the optical setup.

See Fig. B.1 for the geometry. The quarter-wave plates ensure that subsequent passes have
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Figure B.1: Optics setup for rotational cooling.
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orthogonal linear polarizations. The two lower lasers and J3 and J2 (pumping J ′ = 3 →

J = 2 ; J ′ = 1, 3 and J ′ = 2 → J = 1 ; J ′ = 0, 2, respectively). The upper laser is J1

(pumping J ′ = 1 → J = 1 ; J ′ = 0, 1, 2).

If a pair of mirrors responsible for the multiple passes are not parallel to each other,

then the angle and distance between subsequent laser passes will not be constant. If the

mirrors are parallel to each other but not to the molecular beam, then the distance between

subsequent laser passes will be constant, but the angle will not be, introducing a double-

peak to the Doppler profile. We can effectively broaden our laser by including a small

intentional angle between the mirrors and beam line. Any molecule with a transverse

velocity will thus see a reduced detuning for one pass and an increased detuning for the

next pass, with an effect that is advantagous on net. The Doppler shift is δf = v
c sin θ,

where θ is the angle between the laser and the normal to the beam line. Our molecular

beam has a forward velocity of approximately 180 m/s, so a 1-degree angular deviation

corresponds to a relative Doppler shift of 4.5 MHz [146, Sec. 3.3.2]. In order to minimize

the angular deviations among beam passes, we first make sure that all passes are roughly

equidistant by eye and then fine-tune using a Doppler scan. Ensuring that subsequent

passes are equidistant in the middle of the vacuum chamber also requires us to place the

mirrors equidistant from the center of the beam line.

An alternative way to obtain a double-peaked Doppler profile is to detune the laser with

respect to the resonance of a molecule with no transverse velocity. If the laser is red-detuned,

for example, then odd passes will be more resonant with with molecules approaching the

laser, while even passes (counterpropagating to the odd passes) will be more resonant with

molecules retreating from the laser. If the laser is blue-detuned, then the opposite is true.

This method of obtaining a double peak has the advantage of being insensitive to forward

velocity spread, but the difference is small. In practice, we have both slightly detuned lasers

and slightly misaligned mirrors.

The Doppler profile of our molecular beam is determined by the collimator geometry.

The 1σ Doppler width at 690 nm is 2.6 MHz [257]. Based on simple geometric constraints,

the maximum transverse velocity of any molecule is 2.5 m/s given a field plate separation

of 4.5 cm, corresponding to ∆ = 2π× 3.6 MHz at 690 nm [258]. I independently calculated
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∆ = 2π × 3.9 MHz with a similar approach but slightly different geometric assumptions.

For conservatism, I will assume that rotational cooling is saturated if optical pumping is

efficient for all molecules with ∆ ≤ 2π × 4 MHz.

There are several frequency scales: γ = 2π × 300 kHz, the decay rate of the C state

[148, Sec. 3.1]; ∆ = 2π × 4 MHz, the maximum detuning from resonance; time-of-flight

bandwidth ωp = 1/Tp, where Tp = σx/v is the time allotted to pump a molecule with

forward velocity v = 180 m/s [146, Sec. 3.3.2] travelling the horizontal 1σx width of the

optical pumping lasers; and Ω, the Rabi frequency.

B.1.2 Optimal laser profile

Vertical shaping

The Rabi frequency at a particular point (for example, x = σx, y = σy, where σi is the

gaussian width of the laser along î) depends on the beam shape and power. A 2D Gaussian

beam with fixed power P has an intensity profile

I(x, y) =
P

2πσxσy
exp

(

− x2

2σ2
x

)

exp

(

− y2

2σ2
y

)

. (B.1)

For a fixed molecular beam half-height (i.e., measured from the center of the beamline)

h, the laser intensity is maximized at the edge of the molecular beam provided σy = h.

The molecular source has an effective diameter of 7 mm and is constrained by the fixed

collimators to have a maximum diameter of 3.9 cm at the end of the interaction region field

plates (taking into account the 0.3 cm safety margin between the extrema of the beam and

each plate) since we have chosen a plate spacing of 4.5 cm [258]. The distance between

the source and the end of the field plates is approximately 154 cm [259]. We thus expect

the parts of the molecular beam that will ultimately be detected in the interaction region

to have a height h at distance d from the source given by h = 0.35 cm + 3.9−0.7
2

d
154 . The

distance between the source and the end of Step 1 of rotational cooling is about 15 cm,

while the distance to the end of Step 2 is about 25 cm. These correspond to molecular

beam heights of h1 = 0.51 cm and h2 = 0.61 cm, so the 2σ heights should be 1.02 cm and

1.22 cm, respectively.
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Rayleigh length

Determining the optimal horizontal width is much more subtle. First, if the horizontal

width is too small, then the Rayleigh length zR = 4πσ2/λ can be smaller than the path

length as the laser makes many passes, and the beam will significantly expand. Over the

path length we use (approximately 10 passes, 15” long each), this is significant for roughly

4σ < 1 mm. This limits the total number of passes that is achievable. At a given relative

beam separation (e.g., 4σ between passes), the horizontal width can be set by maximizing

the number of passes.

Number of polarization switches

However, the number of passes is not the only optimization condition for the horizontal

beam width because only a few passes are required provided the transitions are saturated.

To see this, we compute the probability that a molecule has not been either lost or pumped

to its target state after n decays. If the branching ratio back to the state addressed by the

laser is b, then the probability of being lost or transferred to the target in exactly i decays

is bi−1(1 − b) = (1
b − 1)bi. Then the probability of being lost or transferred after at least n

decays is

(1
b − 1)

∑∞
i=n b

i = (1
b − 1) bn

1−b

= bn−1.
(B.2)

For the transitions of interest here, typically b ∼ 0.11/2, so we see that only about 10%

of molecules require more than 2 decays in order to be either lost or transferred to the

target state. Therefore, in the regime that the laser transition is saturated, only about two

polarization switches ought to be necessary in total. This estimate is actually conservative

because many decays within a given pass return to a bright state and can be pumped again

without switching polarizations. Since a well-shaped beam allows for 5 or 6 polarization

switches, we see that the number of polarization switches is not limiting.
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Figure B.2: Adiabatic following on resonance. For Ω/ωp ∼ 5, we require the maxima of sub-
sequent laser passes to be separated by ∼ 4σ in order to have negligible adiabatic following.
Here, each subsequent contour represents an additional 10% of dark-state molecules that
adiabatically follow. This is computed for a three-level system, which differs significantly
from our many-level optical pumping systems. Any quantitative interpretation of these
results should therefore be taken loosely.

Adiabatic following

In order to set the beam separation, we must understand the molecular dynamics between

laser passes. If the driving field is too large, or if the beams are not sufficiently separated,

then the molecules in the dark state of one pass will adiabatically follow to the dark state

of the next pass, defeating the purpose of polarization switching. Using a simplified three-

level model with two Gaussian beams, we can compute the proportion of molecules that

adiabatically follow the dark state of the first beam into the dark state of the second

beam. See [149, Sec. 4.3] for a similar framework. Adiabatic following is most severe on

resonance, so that is the only condition I’ll consider here. The required beam separation

to achieve a given proportion of molecules that adiabatically follow then depends only on

the ratio of Rabi frequency to the frequency corresponding to the timescale of molecular

propagation through the lasers, Ω/ωp. See Fig. B.2 for results. Over a reasonable range of

Rabi frequencies such that several Rabi oscillations occur within a beam pass, subsequent

laser beams should be separated by ∼ 4σx. Given a fixed interaction length, we want to

minimize the beam separation for a better “duty cycle” of optical pumping.

Because adiabatic following depends only on Ω/ωp, the beam waist has a non-trivial
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effect on the acceptable beam separation: Ω2 ∝ 1/σx, but ωp ∝ 1/σx. Thus Ω/ωp ∝ √
σx,

and minimal adiabatic following is favored by smaller beams.

Magnetic remixing

It is common in optical pumping schemes to use magnetic fields to remix dark sublevels

into bright sublevels. The time scale for remixing is typically given by τ = 1/(2π~µ · ~B), so

if τ ≪ L/v where L is the interaction length and v is the molecule velocity, then a single

polarization can suffice to pump out both dark and bright states. For this to work, the

magnetic field must be neither parallel nor perpendicular to the laser polarization. This is

treated in much more subtle and rigorous detail in [260].

Since the X state of ThO is essentially entirely composed of 1Σ character, the mag-

netic moment is extremely small [159]. However, due to molecular rotation, there is still a

magnetic moment on the order of the nuclear magneton µN [261]. Because the interaction

length available to us for rotational cooling is so large, the condition τ ≪ L/v is possible to

satisfy using magnetic fields on the order of 1 G. Unfortunately, this argument breaks down

because the Zeeman shift is small compared to the AC Stark shift from the laser field, and

the quantization axis is set almost entirely by the laser polarization. In this regime, a dark

state |D〉 evolves into a time-dependent state with bright component, |Ψ(t)〉 = |D〉+ǫ(t)|B〉,

where ǫ(t) = −i ∫ t0 dt′〈B|~µ· ~B|D〉e−i∆E t′ . AC Stark shifts produce an energy shift ∆E = Ω/2

on resonance, so the steady-state (non-oscillating) contribution to the bright state ampli-

tude component has magnitude 2〈B|~µ · ~B|D〉/Ω ∼ ~µ · ~B/Ω. For µ = µN , B ≈ 0.5 G, and

Ω ∼ 1 MHz, this amplitude is extremely small and the magnetic field does not induce a

significant enough bright-state population to pump out of. Therefore, magnetic remixing is

not sufficient and polarization switching must be used.

Saturation condition

We want to maximize the time that the molecules spend in the excited state so that it has

the most opportunity to decay into the target state. Using a simple two-level model, it is

straightforward to compute that the probability of occupying the excited state after time

t, with detuning ∆ and Rabi frequency Ω, is
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P (t) =
Ω2

∆2 + Ω2
sin2(

√

Ω2 + ∆2t/2). (B.3)

To be conservative, I’ll consider an interaction length from −σx to +σx at a vertical

distance at y = σy and treat the beam as a flat-top with intensity I = P/(2πeσxσy). The

intensity is related to the electric field E by I = cnǫ0E2/2, where c is the speed of light,

n = 1 is the index of refraction of vacuum, and ǫ0 is the permittivity of space. This field

is related to the Rabi frequency by Ω = |~d · ~E|, where ~d is the transition dipole moment.

The transition moment between the X and C states in ThO is |dX−C | = 0.52 ± 0.08 ea0

[148, Sec. 3.3.3]. Any transition between particular rotational and magnetic levels must

also include normalized Hönl-London factors and Clebsch-Gordan coefficients.

As long as
√

Ω2 + ∆2(σ/v) > π, we can average the time spent in an excited state over

a molecular beam pass such that the average excited-state population is 1
2

Ω2

∆2+Ω2 over a

duration 2σ/v. As a conservative example, with
√

Ω2 + ∆2 = 2π × 1 MHz and σ = 0.25

mm, the LHS of this condition is ∼ 3π. Thus the expected time T that a molecule spends

in the excited state is

T =
N
∑

i=1

σi
v

Ω2
i

∆2 + Ω2
i

, (B.4)

where I’ve allowed the possibility of N passes with different beam widths and Rabi frequen-

cies.

If we require n decay times in the excited state, then we need T ≥ nτ, where τ = 2π/γ.

Based on the discussion in Sec. B.1.2, we should require about 2 decays, and we ought to

allot 2τ per decay in order to have a high probability of decaying. Therefore, I’ll let n = 4.

Since τ = 490 ± 40 ns [148, Sec. 3.1], we need

vT =
N
∑

i=1

Ω2
i

∆2 + Ω2
i

σi ≥ 350µm. (B.5)

Using the relations above, we can compute Ω2 = d2P/(cǫ0πeσxσy) ≡ ζ/σx, where I’ve

defined the constant ζ. Then it’s easy to work out that the condition above is
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F ≡
N
∑

i=1

σx,i
σx,i + ζ/∆2

ζ

∆2
≥ 350µm, (B.6)

where F is a figure of merit (with units of length) for the optical pumping geometry.

To leading order in Ω2/∆2, the LHS reduces to Nζ/∆2 (in other words, it becomes

independent of σx,i). However, it’s easy to show that the LHS scales at higher order with

σx,i, provided N is fixed.

We therefore have the following competing constraints on setting σx,i:

• Very small beam waists will lead to small Rayleigh lengths and thus constrain the

number of passes, favoring larger beams.

• More passes can be fit with smaller beam waists (provided the effect of the Rayleigh

length is not dominant), favoring smaller beams.

• Adiabatic following is more severe for larger ratios Ω/ωp ∝ √
σx, favoring smaller

beams.

• The figure of merit F increases slightly with σx,i, provided the number of passes is

fixed, favoring larger beams.

We can handle all of these conditions by maximizing F in a given optical geometry, taking

account of the beam divergence, with the beam separation as a free parameter. If we then

fix the separation under the constraint that adiabatic following is negligible, we will have

a near-optimal configuration. It’s possible that the optimum occurs when there is a small

degree of adiabatic following but many passes; however, this should not be a dominant

effect.

Beam divergence

The simplest optical configuration is that shown in Fig. B.1: an aspheric lens is used to

collimate light in the horizontal direction from an optical fiber. Since we only use one lens,

we cannot necessarily reach the minimal divergence at a given beam waist set by diffraction.

In the configuration shown in Fig. B.3, we can freely choose the focal length f of the asphere
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ro ri �i�o

h

do di

f

Figure B.3: Parameters determining the beam waist and divergence at a given distance
from the optical fiber

and the object-lens distance do to set the image-lens distance di and waist size ri as desired.

Then θi is fixed by geometry.

Specifically, the object size r0 is set by the mode field diameter of the optical fiber,

MFD = 4σ and the divergence is set by the numerical aperture NA = sin θo. For Thorlabs

P1-630PM-FC patch cables, NA = 0.12 and MFD = 4.2µm. Letting r = 2σ, we know

that ro = MFD/2 = 2.1µm.

The image and object distance are related by the thin-lens equation,

1

f
=

1

do
+

1

di
. (B.7)

The image size ri is determined in terms of θi by conservation of etendue, ro sin θo =

ri sin θi. The last condition we need to determine θi is based on the lens geometry: h =

ro+do tan θo = ri+d tan θi. For a given desired waist size ri at distance di, we can compute

the necessary focal length f and object distance do, along with the consequential waist

divergence θi:

θi = sin−1
(

r0 sin θo
ri

)

do = di tan θi+ri
tan θo

− ro

f = 1
1

do
+ 1

di

.

(B.8)
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Figure B.4: The number of passes that can fit on the λ/4 for a beam 1.25 cm tall, as a
function of the 1σ focal size along x.

Since this is based only on geometric optics, we ought to check that the computed

parameters don’t violate the diffraction limit, θi > ri/zR, where zR is the Rayleigh range.

It’s straightforward to check that in the range of interest with σ ∈ (100µm, 1 mm), this

approach doesn’t violate the diffraction limit.

B.1.3 Computing the required power

Figure of merit

In order to use the figure of merit F , we need to compute the number of passes the beam can

make. Taking account of the beam divergence θ, the 1σ width of the N th pass of a beam with

focused width σ0 is σN = σ0 + N−1
2 θL, where L = 27 cm is the path length between passes.

Thus if N beams are uniformly spaced by 4σN (to avoid significant adiabatic following),

the total interaction length is Lint = 4Nσ0 + 2N(N − 1)θL. The beam interaction length is

limited by the 1” diameter quarter-wave plate used for polarization switching. For a beam

1.25 cm tall, the unclipped length along the wave plate is just over l =2 cm. We can solve

for N by setting Lint = l and then rounding down to the nearest integer. The number of

passes achievable as a function of focused beam size is shown in Fig. B.4.

Given this, and the size of the ith beam, we can compute F as a function of the focused

beam size σo and compare to 350 µm (the estimated requirement to saturate optical pump-
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ing). It turns out that variations in beam size don’t affect the efficiency much within a

range that allows a fixed number of passes, and the optimal size occurs with the maximum

number of passes. Further, the profile of F (σ) doesn’t depend strongly on ζ/∆2. These

features are consequences of the limit ζ/∆2 ≪ σ. Since the figure of merit F doesn’t vary

strongly in the range σ ∈ (200, 500)µm (where 7 laser passes can be made), for any fixed

value of ζ/∆2, it is useful to compute F (ζ/∆2, σ = 350µm). In the range of interest, we

find that F ∝ ζ/∆2 to a good approximation.

Using these results, we find that F > 350µm when ζ/∆2 > 30µm. For reference, if

∆ = 2π × 1 MHz, P = 1 mW, σy = 1.25 cm, and d = 1 ea0, then ζ/∆2 = 580µm. It is

then straightforward to scale ζ/∆2 according to the actual experimental parameters. All of

this assumes that the detuning is fixed for all passes, so the mirrors must be parallel to the

beamline. If we angle the mirrors so that every other pass preferentially addresses a different

velocity class, to leading order this has the effect of letting N → N/2 and ∆ → ∆/2, so

that F → 2F .1 The saturation condition is then equivalent to requiring F = 700µm when

using ∆ = 2π × 2 MHz to account for angled mirrors, leading in turn to the requirement

ζ/∆2 > 60µm.

Transition dipole moment

The most uncertain input parameter to the constant ζ is d, the transition dipole moment.

We have measured |dX−C | = 0.52 ± 0.08 ea0 [148, Sec. 3.3.3]. The transition strength

between given rotational levels is then modified by the normalized Hönl-London factor,

Franck-Condon factor FC = 0.84, and Clebsch-Gordan coefficients. For the transitions

J ′ = 3 → J = 2 and J ′ = 2 → J = 1 in the absence of an electric field, the contribution

of squared Clebsch-Gordan coefficients is 1/3 on average, assuming a uniform distribution

over sublevels. For J ′ = 1 → J = 1, only m = ±1 are excited and the squared Clesbch-

Gordan coefficients contribute a factor of 1/2 for each laser polarization. The contribution

of Hönl-London factors is given in Table 2.4. All contributions together are shown in Table

1. This is a variation of artificially broadening the laser linewidth to more efficiently use the available
power. It is of course not entirely ideal because opposite polarizations see different average detunings and
thus pump with different efficiencies, but the overall pumping efficiency can be increased somewhat.
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3 → 2 2 → 1 1 → 1

(CG)2 1/3 1/3 1/2
HL 2/5 1/3 1 − η0

FC 0.84 0.84 0.84
(CG)2×HL×FC 0.11 0.093 0.21

d2 = d2
X−C×(CG)2×HL×FC [(ea0)2] 0.030 0.025 0.057

Table B.1: Computation of the transition dipole moments used in rotational cooling. The
value η0 = 1/2 is used.

B.1.

Saturation power

Using these results, we can compute the necessary power P such that ζ/∆2 = 60µm using

∆ = 2π × 2 MHz, σ0 = 350µm, σy = 1.25 cm, and the transition moments shown in Table

B.1. We then find P3→2 = 14 mW, P2→1 = 16 mW, and P1→1 = 7 mW. Note that this is

not an ordinary “saturation power.” Instead, it’s the power required for the most detuned

molecule at the vertical edge of the laser beam to be in the excited state for 4 decay times

(also assuming a flat top beam that slightly underestimates the average intensity). The

majority of molecules will be either closer to the center of the beam or less detuned, and

therefore require less power than these values.

With 7 passes and the optical geometry as described in previous sections, we find that

the 1/e2 saturation powers are 8 mW, 7 mW, and a few mW for J1, J2, and J3, respectively

(the SNR for the J3 laser saturation curve is poor because the gain is so small, and we can

only resolve a few percent change in molecular signal). Thus with 10-15 mW for each laser,

we can fully saturate rotational cooling. This appears to be consistent with our estimates

of the power required to efficiently optically pump the most outlying molecules (in both

position and velocity), which lead to power requirements a factor of ∼ 2 more stringent

than for the molecular ensemble overall.

B.2 Decay with coherences

In the foregoing treatment, we have assumed that the coherences in excited states, which

arise during optical pumping, don’t have any effect on branching ratios. Using the density
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matrix formalism, I show here that this assumption is correct, as would be naively expected.

Note that while this calculation is relatively straightforward and has a trivial result, I

include it here to serve as a reference about similar calculations using the density operator.

The lecture notes by John Preskill [262] give an especially useful overview of the density

operator approach.

B.2.1 Density matrices and the master equation

The density operator encodes all available information about an ensemble of quantum me-

chanical states, and is the natural formalism to describe the interactions of a system with its

environment. It is usually expressed as a matrix in a particular basis; as usual, it is simplest

(but not necessary) to use an orthonormal basis. Diagonal entries are the probabilities for

a system to be found in a particular state of the basis, while off-diagonal entries provide

information about coherences.

The density operator evolves in time under the action of a “superoperator,” which maps

operators to operators. A physical time-evolution process will map a density operator

to another density operator, so the superoperator must be trace-preserving, hermiticity-

preserving, and positive to ensure reasonable behaviors of probabilities. Further, the super-

operator is usually taken to be linear in its argument, which simplifies (but might not be

necessary for) the ensemble interpretation of the density operator.

To further constrain the equation of motion for the density operator, we also require

that the time-evolution process be memoryless. In particular, terms like
∫ t

−∞ dt′ f(t′)ρ(t′) in

an equation of motion are consistent with all previous conditions. Physically, these terms

arise from information leaking into the environment and then later leaking backing into

the system. The memorylessness (or Markov) condition removes these contributions to the

evolution of the density operator.

The most general equation of motion for the density operator consistent with these

conditions is called the Lindblad equation, or sometimes the “master equation”:

ρ̇ = −i[H, ρ] +
N2−1
∑

k

CkρC
†
k − 1

2
{ρ,C†

kCk}. (B.9)

297



As usual, [A,B] represents a commutator, and {A,B} represents an anticommutator.

N is the dimension of the Hilbert space describing the system. The first term usually

describes unitary evolution for a given Hamiltonian (though H is not unique and cannot

always be identified as the Hamiltonian since transformations of H and each Ck exist that

leave the equation of motion unchanged), the transformation of ρ under each Ck describes

“dissipative” effects, and the anticommutator enforces properties of the time-evolution su-

peroperator like norm-preservation. Each of the N2 − 1 Ck operators is called a Lindblad

operator, or sometimes a Krauss operator. There are N2 Krauss operators in total, with

the last one accounting for the Hamiltonian and anticommutator terms.

B.2.2 Describing decays

We will take H as the usual Hamiltonian and let each Ck describe a separate decay channel.

Note that for N distinct states, there are only N2−N < N2−1 pairings of distinct states, so

we never need to describe multiple decays in the same Lindblad operator. All molecules that

decay to unwanted states are assumed to fall into the same “dump” state for simplicity. The

decay A ; B is described by an operator CBA with matrix elements CBAij =
√
γBA δiBδjA

in the obvious orthonormal basis.

I will show that a state s uncoupled by the Hamiltonian to other states accumulates

in a “classical” way, provided each Lindblad operator couples s to at most one other state

(there is another less intuitive condition that we will see, which is satisfied for our usual

Lindblad operators):

Ṗs = ρ̇ss

=
∑

i (γsiPi − γisPs) ,
(B.10)

where Pi is the population of the i-th state. The equation above is just a classical rate

equation including decays both into and out of state s.

Explicitly, we assume that His = Hsi = ǫsδis so that s is not coupled by the Hamiltonian

to any other states. Then the commutator in the first term of the Lindblad equation for

ρ̇ss is
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[H, ρ]ss = Hsiρis − ρsiHis

= ǫsδisρis − ǫsδisρsi

= ǫsρss − ǫsρss

= 0.

(B.11)

We now consider the effect of the Lindblad operators on the change in population of

state s. Consider the contribution from just one Lindblad operator C, and assume that C

couples s to at most one other state q so that Csi = csqδiq + cssδis and Cis = csqδiq + cssδis.

Then we need to compute the contribution to the evolution of ρ involving C,

Csiρij(C
†)js − 1

2ρsi(C
†)ijCjs − 1

2(C†)siCijρjs

= CsiρijC
∗
sj − 1

2ρsiC
∗
jiCjs − 1

2C
∗
isCijρjs.

(B.12)

It is easiest to find the coefficient of each possible entry in ρ. For example, consider the

coefficient of ρab where a, b 6= s, q. Only the first term above can possibly contribute, but its

contribution is CsaρabC∗
sb = 0 since Csa = 0. Similarly, it is easy to see that the coefficient

of ρss is −|Cqs|2 and the coefficient of ρqq is |Csq|2.

The coefficient of ρsq is (1/2)(C∗
sqCss −CqsC

∗
qq) and the coefficient of ρqs is its complex

conjugate. Therefore there are no contributions from coherences (off-diagonal terms) as

long as C∗
sqCss − CqsC

∗
qq = 0, which is achieved (for example) when Css = Cqq = 0.

We define |Cij |2 = γij . Then, the contribution to Ṗs from the Lindblad operator coupling

s to q is γsqPq − γqsPs. Summing over Lindblad operators then recovers the rate equation

above, with no coherent effects. We can even generalize to the case in which state s is

coupled to other states by the Hamiltonian, in which case

Ṗs = −i[H, ρ]ss +
∑

i

(γsiPi − γisPs) , (B.13)

and the contribution of decays is still described in the manner of a classical rate equation.
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Appendix C

Comments on the parity sum

C.1 Parity sum decomposition

In Sec. 3.1, I described how we use the “parity sum” formalism for data analysis. In

particular, for some quantity X(s1, · · · , sn) measured with a configuration of binary switches

s1, · · · , sn each taking value ±1, we write

X(s1, · · · , sn) = X [nr] + s1X
s1 + · · · + snX

sn + s1s2X
s1s2 + · · · + (s1 · · · sn)Xs1···sn . (C.1)

We interpret a term Xsa···sz as being the contribution to a measured value of X that is

odd under switches sa, · · · , sz and even under all other switches.

A bit more concretely, this means that the value of X measured in a configuration with

all switches set to si = +1 is given by

X(+,+, · · · ,+) = X [nr] +Xs1 +Xs2 + · · · +Xsn +Xs1s2 + · · ·Xs1···sn , (C.2)

and reversing the sign of switch si introduces a relative sign on the RHS for any term in

which si appears explicitly as a superscript. We can write a parity component as

Xsasb···sz =
1

2n

∑

s′
1,··· ,s′

n=±1

X(s′
1, · · · , s′

n)s′
a · · · s′

z. (C.3)

If X has a component that reverses sign under sa, then the terms on the RHS of Eq. C.3
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with s′
a = ±1 reinforce each other; otherwise these terms cancel. The same argument holds

for all reversing components up to s′
z; therefore, this formula extracts the contribution to

the measured value of X that is odd under the reversal of any switch in {sa, · · · , sz}. For

any si /∈ {sa, · · · , sz}, a contribution to X that is odd under si will cancel in the sum over

s′
i = ±1, while a contribution even under si will reinforce. We therefore know that Eq. C.3

extracts the contribution to the measured value of X that reverses sign with sa, · · · , sz but

no other switch. The prefactor of 2n is necessary because a total of 2n signed states are

included in the sum. (Showing explicit agreement between Eqs. C.1-C.3 is rather tedious.)

C.2 Parity sum as a special case of least squares

The parity sum as a data analysis tool is just a special case of least squares regression

(see, e.g., [263]). In the general case, we have n observations y1, · · · , yn and fit to a model

~y = X~β + ~ǫ, where the residuals ~ǫ are normally distributed for each observation (though

possibly with different variances). Here, X is an n × k matrix, and ~β is a k-dimensional

vector, specifying the k “variables” in the model. The entry Xij describes the value of the

j-th variable taken in the i-th observation of y. Written this way, it’s clear that an estimate

β̂ of the parameter values ~β can be obtained with β̂ = X−1~y provided X is invertible. Even

when X is not invertible, the parameters can be estimated by β̂ = (XTX)−1XT ~y.

Note that this estimate of ~β might have larger uncertainty than necessary: in particular,

if some observations are much noisier than others, then it will be advantageous to perform

generalized (rather than ordinary) least squares regression, for which the relative uncertain-

ties of (and covariances among) different measurements is taken into account. However, we

do not want to weight certain experimental states more than others, since this could intro-

duce bias to our results (if, for instance, some experimental configurations systematically

have less signal than others, while also systematically giving a larger precession frequency

in the EDM channel).

To take our usual parity sum approach in ACME as an example, ~β is the vector of

“parity components,” and X is a matrix of switch states over all measured states of the

experiment. For example, we might have a single switch s, in which case ~βT = [X [nr]Xs].
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If we take two measurements, with s = +1 followed by s = −1, then

X =







+1 +1

+1 −1






. (C.4)

This perspective makes it quite clear that we can “generalize” the parity sum approach

(for example, to the case of a switch with three states) by simply performing ordinary least

squares with some appropriate model to distinguish physically distinct contributions to the

phase (or contrast, frequency, etc.).
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Appendix D

AC Stark and Zeeman shifts

In this appendix, we will consider a few specific scenarios for generating systematic error

terms, distinguished from each other by the intermediate states through which M = ±1

levels are perturbed. I’ll drop factors of order unity throughout this initial treatment. We

use the notation developed in Sec. 4.3. As a reminder, we take ∆ to be a characteristic

energy splitting betwen |H,J = 1,M = ±1〉 and some relevant intermediate state. The

three types of intermediate states we’ll consider occur in:

• The Ω-doublet structure in |H,J = 1〉, with splitting ∆ ∼100 MHz

• Higher rotational levels in |H〉, ∆ ∼10 GHz

• The |Q〉 state or other electronic states, ∆ ∼ 10 THz

Let’s first estimate a conservative order of magnitude for the second-order perturbations

involved. We will have terms at the order of c(2) ∼ V 2t
∆ . Suppose the perturbations V

arise from AC Stark or Zeeman shifts. If the AC fields are produced by the molecules

flying through DC field gradients, then V represents the amplitude by which the Stark or

Zeeman energy changes throughout the molecule’s trajectory. Under normal conditions, we

have magnetic field gradients of ∼ 10µG/cm, giving up to 100µG field difference between

the preparation and readout regions, in addition to ∼ 100µG or smaller offset fields. Then

V ∼ gH(Q)µB×100µG ∼2π×10−2(1) kHz, where I have supposed that interactions mediated

by the Q or other electronic states involve g-factors of order unity. The largest electric field
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gradients are produced by the curvature of the field plates, which give misalignments up

to ∼ 10µm/10 cm ∼ 10−4 rad. This in turn generates up to Ex ∼ 10−4 × 100 V/cm ∼ 10

mV/cm fields that vary across the molecules’ flight, and a characteristic Stark shift of

∼ 2π × 10 kHz. In all cases, the precession time is t ∼ 1/kHz.

We consider here contributions to the second-order perturbation of the molecular state,

c(2), involving B2
⊥, ~E⊥ · ~B⊥, and E2

⊥. In all cases, the E2
⊥ term dominates, but other terms

may have a more concerning behavior with respect to our experimental switches. Higher-

order corrections are suppressed further by factors of ∼ E⊥(B⊥)/∆ ≤ 10−4. Any possible

mixing through excited vibrational levels should be qualitatively similar to mixing through

the Ω-doublet or rotationally excited states, but the couplings are suppressed by much

larger detunings, ∆ ∼ 1 THz. Similarly, spin-orbit mixing with 1Π1 and 3Π1 states modifies

the effective electric and magnetic dipole moments of the H state, but does not act on the

lab-frame quantities J,M,Ω and thus has no effect on the qualitative behavior of Stark and

Zeeman perturbations.

In ACME II, we are sensitive to ∼ µrad phases, so we are concerned with perturbation

coefficients of order c(2) ∼ 10−6 or larger. Here, I’ll examine all terms that can generate

c(2) > 10−7 by the most naive order-of-magnitude estimate. Below is a fairly exhaustive list

of the couplings between M = ±1 states that might arise due to time-dependent electric and

magnetic fields. I always consider the largest numerical contribution to the perturbation

for purposes of estimating the order of magnitude.

1. Various effects within the H state Ω-doublet with J = 1

(a) Second-order mixing, c(2) ∼ E2
⊥t

∆N
∼ 10−3

(b) Corrections due to time-dependent parallel (i.e., ẑ-aligned) fields, c(2) ∼ D2E2
⊥t

∆N
×

DδEz
∆N

∼ 10−7

(c) Transitions involving the “wrong” Ω state due to incomplete molecular polariza-

tion, c(2) ∼ D2E2
⊥t

∆N
×
(

∆Ω
D|E|

)2
∼ 10−9

(d) Higher-order corrections to second-order mixing coefficients, c(2) ∼ D2E2
⊥t

∆N
× t

∆N
∼

10−8
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(e) Corrections to the splitting in the Ω-doublet, c(2) ∼ D2E2
⊥t

∆N
× gHµB |B|

∆N
∼ 10−8

i. Note: the effects of both P̃ states of M = 0 further suppress corrections

involving ∆Ω 6= 0

2. Transitions involving J = 2 of the H state

(a) Transitions between the J = 1 manifold and J = 2, c(2) ∼ D2E2
⊥t

Brot
∼ 10−5

(b) Mixing with J = 2 due to the ordinary Stark shift, transitions within the J = 2

doublet, and mixing back to J = 1: c(2) ∼
(

D|E|
Brot

)2
× D2E2

⊥t
∆N

∼ 10−7

(c) Mixing with J = 2 due to the ordinary Stark shift, transition within the J = 2

doublet, and transition back to J = 1: c(2) ∼
(

D|E|
Brot

)

× DE⊥
∆N

× DE⊥
Brot

∼ 10−12

3. Transitions involving the Q or other electronic states, c(2) ∼ D2E2
⊥t

A ∼ 10−7

(a) Note: the spin-uncoupling interaction that mixes H with Q only applies to J ≥ 2

states

(b) Selection rules of the Stark interaction actually prohibit coupling H and Q, and

other states (e.g., A) are too far away to contribute effects at the 10−7 level.

(c) Zeeman interactions with the Q or other electronic states are too weak to con-

tribute at the level of interest

Based on these estimates, I consider cases 1(a-b) and 2(a-b) in greater detail. Note that

only case 1(a) is large enough to still be significant if a factor of gHµBB⊥ is substituted for

a factor of DE⊥, so I’ll ignore magnetic fields in cases 2(a-b).

Matrix elements

We start by computing the matrix elements for transverse electric and magnetic fields Ex,y
and Bx,y.

Stark matrix elements

The Stark interaction is ~D · ~E and has matrix elements (see [146, Eq. 2.25] or Eq. 2.9)
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〈JMΩ; ΛSΣ| ~D · ~E|J ′M ′Ω′; Λ′S′Σ′〉 = δSS′δΣΣ′(−1)M
′−ΩDΩ−Ω′EM ′−M

×
√

(2J + 1)(2J ′ + 1)







J 1 J ′

−Ω (Ω − Ω′) Ω′













J 1 J ′

−M (M −M ′) M ′






,

where I am using the shorthand EM ′−M ≡ T 1
M ′−M (E) and DΩ−Ω′ ≡ 〈Λ|T 1

Ω−Ω′(D)|Λ′〉.

Note that in all cases presently of interest, we have transitions only within the H state,

so δSS′δΣΣ′ = 1. Since ∆Ω = ±1, 0 for vector operators and only Ω = ±1 states exist in the

H manifold, we will always have Ω′ = Ω so that DΩ−Ω′ ≡ D‖. Then

〈JMΩ; ΛSΣ| ~D · ~E|J ′M ′Ω′; Λ′S′Σ′〉 → (−1)M
′−ΩD‖EM ′−M

×
√

(2J + 1)(2J ′ + 1)







J 1 J ′

−Ω 0 Ω













J 1 J ′

−M (M −M ′) M ′






.

1(a-b): Transitions within J = 1 manifold

For transverse electric fields causing transitions with the J = 1 manifold, we need J =

J ′ = 1, M = 0, M ′ = ±1, and Ω = ±1, up to complex conjugation of the matrix element

depending on whether we’re driving from or to M = 0. Then we compute (with a change

in priming convention),

〈1, 0,Ω; ΛSΣ| ~D · ~E|1,M,Ω; ΛSΣ〉 = −MΩ

2
×D‖EM . (D.1)

The usual Stark shift in J = 1 due to z-aligned fields, important for case 1(b), has a

similar form except for the substitution Ez ↔ −EM :

〈1,M,Ω; ΛSΣ| ~D · ~E|1,M,Ω; ΛSΣ〉 = +
MΩ

2
×D‖E0. (D.2)
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2(a): Transitions between J = 1 and J = 2 due to perpendicular fields

Here, we let J ′ = 1, J = 2, M = 0, M ′ = ±1, and Ω = ±1. Then we consider

〈2, 0,Ω; ΛSΣ| ~D · ~E|1,M,Ω; ΛSΣ〉 = − 1

2
√

5
×D‖EM . (D.3)

Also consider M = 2M ′ (and other quantum numbers the same), for

〈2, 2M,Ω; ΛSΣ| ~D · ~E|1,M,Ω; ΛSΣ〉 = −
√

3

5
×D‖EM . (D.4)

2(b): Mixing between rotational levels and transitions within J = 2

Nick Hutzler works out the matrix elements for mixing between adjacent rotational levels

due to z-aligned fields [146, Eq. 6.19]:

〈2,M,Ω; ΛSΣ| ~D · ~E|1,M,Ω; ΛSΣ〉 = +
1

2

√

3

5
×D‖E0. (D.5)

We will also need M -changing matrix elements with J = J ′ = 2. Here, I still assume

M = ±1:

〈2, 0,Ω; ΛSΣ| ~D · ~E|2,M,Ω; ΛSΣ〉 = −MΩ

2
√

3
×D‖EM (D.6)

〈2, 2M,Ω; ΛSΣ| ~D · ~E|2,M,Ω; ΛSΣ〉 = +
MΩ√

6
×D‖E−M (D.7)

Zeeman matrix elements, 1(a): Transitions within J = 1 manifold

The only Zeeman matrix element we need to consider here is of the form

〈1, 0,Ω; ΛSΣ|gLµB~L · ~B + gSµB ~S · ~B|1,M,Ω; ΛSΣ〉. (D.8)

Let ~v = ~S, ~L for convenience. Nick Hutzler shows that [146, Eqs. 2.34-2.35]
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〈JMΩ; ΛSΣ|gvµB~v · ~B|J ′M ′Ω′; Λ′S′Σ′〉 = (−1)M
′−ΩgvµBBM ′−M

×
√

(2J + 1)(2J ′ + 1)







J 1 J ′

−Ω 0 Ω′













J 1 J ′

−M (M −M ′) M ′






〈ΛSΣ|T 1

0 (~v)|Λ′S′Σ′〉,

where the last factor 〈ΛSΣ|T 1
0 (~v)|Λ′S′Σ′〉 is complicated to calculate in detail since many

perturbations are involved at the precision that we care about (see Nick Hutzler’s thesis

for details in the H state). However, the result in the end is that it can be folded into an

effective dipole moment µ‖. Note that µ‖ is defined to “carry” a factor of Ω, so

〈JMΩ;H|gLµB~L · ~B + gSµB ~S · ~BZeeman|J ′M ′Ω′;H〉 = (−1)M
′−ΩΩµ‖BM ′−M

×
√

(2J + 1)(2J ′ + 1)







J 1 J ′

−Ω 0 Ω′













J 1 J ′

−M (M −M ′) M ′






.

We will restrict attention to Ω′ = Ω, M ′ = ±1, M = 0, J = J ′ = 1:

〈1, 0,Ω;H|gLµB~L · ~B + gSµB ~S · ~BZeeman|1,M ′,Ω;H〉 = −M

2
× µ‖BM . (D.9)

This is similar to the case for z-aligned magnetic fields [146, Eq. 2.39]

〈1,M,Ω;H|gLµB~L · ~B + gSµB ~S · ~BZeeman|1,M,Ω;H〉 = +
M

2
× µ‖B0. (D.10)

Mixing within the J = 1 manifold

Now that we have all necessary matrix elements in hand, we will consider the effect of

perturbations that mix states M = +1 ↔ M = −1 within the J = 1 manifold, via

the M = 0 intermediate states in J = 1. I will assume fields that are linear in time,

D‖Ex = νExt, etc. This has the advantage of giving us terms arising from an average
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offset and gradient, so that the resulting effect should be reasonably characteristic of an

arbitrary perturbation. Note that we do not necessarily expect the resulting perturbations

to be rotationally symmetric about the z-axis. I also assume changes in the ẑ-aligned fields

that are linear in time, D‖Ez = νEzt and analogously for B so that the diagonal energy

shift is given by −M
2 (νBz + ΩνEz)t ≡ ω̇zt. This will modify the effective detunings such

that ωP̃M t → ωP̃M t − ω̇z
∫ t

0 τdτ = ωP̃M t − 1
2 ω̇zt

2. Here, a state in M = 0 is labeled by

its parity P̃ and a state with M = ±1 is simply labeled by its M quantum number, so

ωP̃M = EM − EP̃ ≈ −ÑD‖|E|/2. The electric field is in absolute value brackets here

to emphasize that it is the primary applied field (not a perturbation) and I’ve neglected

higher-order corrections to the detuning, ωP̃M . The factor of Ñ comes from MΩ in the

expression for the Stark shift, together with the fact that the applied electric field is odd

under Ẽ (and using Ω = MÑ Ẽ). Further, let νEx + νEy + νBx + νBy ≡ ν⊥.

Our initial and final states are labelled by |Ñ ,M〉 and our intermediate states will be

M = 0, labelled by P̃ . We therefore compute matrix elements

VP̃M = 1√
2
(〈J = 1,M = 0,Ω = 1| + P̃〈J = 1,M = 0,Ω = −1|)V

×|J = 1,M,Ω = MÑ Ẽ〉

= − 1√
2
(〈J = 1,M = 0,Ω = 1| + P̃〈J = 1,M = 0,Ω = −1|)ν⊥

×|J = 1,M,Ω = MÑ Ẽ〉t

≡ αP̃M t.

(D.11)

We can work through the exact form of this matrix element shortly, but we can already

find a closed form of c(2)
MM and c(2)

M(−M) in terms of αP̃M :

c
(2)
MM (t) = −∑P̃

∫ t
0 dt

′′α∗
P̃M t

′′e−i(ωP̃M t′′−ω̇zt′′2/2)
∫ t′′

0 dt′αP̃M t
′ei(ωP̃M t′−ω̇zt′2/2)

= −∑P̃ |αP̃M |2 ∫ t0 dt′′t′′e+i(ÑD‖|E|t′′+ω̇zt′′2)/2 ∫ t′′

0 dt′t′e−i(ÑD‖|E|t′+ω̇zt′2)/2.

(D.12)

By inspection, a given Ω state can only couple to one component of the P̃ state, and a

factor of P̃ explicitly appears in the matrix element αP̃M for Ω = −1 but not for Ω = +1.

However, when we take the absolute magnitude of the matrix element, the (possible) factor
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of P̃ is squared and plays no role. Therefore, |αP̃M | → |αM | is actually independent of P̃ ,

and the sum simply yields a factor of 2.

Computing the integral to leading order in ω̇zt
D‖|E| and dropping higher-order terms in

t
D‖|E| , we find

c
(2)
MM = −iÑ |αM t|2

D‖|E|

(

4

3
− 2

Ñ ω̇zt

D‖|E|

)

t. (D.13)

I have collected terms so this amplitude takes the form of a phase accumulating linearly

in time.

We use standard conversions between vectors in spherical and cartesian bases,

vM = − 1√
2
(vx + iMvy)

v0 = vz.
(D.14)

Then, using Ω = MÑ Ẽ , we find

|αM t|2 = 1
16 |MÑ ẼD‖(Ex + iMEy) + µ‖(Bx + iMBy)|2

= 1
16 (D2

‖E2
⊥ + µ2

‖B2
⊥ + 4MÑ ẼD‖µ‖ ~E⊥ · ~B⊥).

(D.15)

Therefore,

c
(2)
MM = −i

ÑD2
‖E2

⊥ + Ñµ2
‖B2

⊥ + 4M ẼD‖µ‖ ~E⊥ · ~B⊥
D‖|E|

(

1

12
+

1

8

MÑµ‖δBz + ẼD‖δEz
D‖|E|

)

t,

(D.16)

where δBz is the accumulated change in the z-aligned magnetic field relative to t = 0, and

similarly for δEz . The only higher-order correction that can be at the 10−7 level is ∼ E2
⊥δEz ,

which has no M -dependence and thus can’t contribute to a systematic. Indeed, there is no

term at the sensitivity of interest that can be made proportional to MÑ Ẽ , so c(2)
MM does

not give a systematic in this model.

Next, consider

c
(2)
M(−M) = −∑P̃

∫ t
0 dt

′′α∗
P̃M

t′′e+i(ÑD‖|E|t′′+ω̇zM t′′2)/2

× ∫ t′′0 dt′αP̃ (−M)t
′e−i(ÑD‖|E|t′+ω̇z(−M)t

′2)/2,
(D.17)
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which is superficially similar to c(2)
M(−M). It is convenient to now explicitly label ω̇zM with

the relevant M state instead of inserting the M -dependence back in at the end. Here, the

time-dependent diagonal elements are actually not suppressed by a factor of D‖|E|. This

is because the z-aligned fields effectively modify the dominant contribution to c
(2)
M(−M),

which is analogous to the term proportional to [exp(iωnit) − 1]/(ωnit) in the case of a static

perturbation, by changing the small detuning ωni (see Sec. 4.3). Doing the integral with

ω̇z(±M)t kept to first order,

c
(2)
M(−M) = −

∑

P̃

Ñ (α∗
P̃M

t)(αP̃ (−M)t)

D‖|E|

(

2i

3
+

1

5
(ω̇z(−M)t

2 − ω̇zM t
2)

)

t. (D.18)

At second order in ω̇z(±M)t
2, terms that are M -even such as ω̇zM t2 × ω̇z(−M)t

2 will

contribute. However, we can actually have time-dependent z-aligned electric fields compa-

rable to ∼ 10 kHz, so this small-parameter expansion is not appropriate. To my knowledge,

there’s no clean form for c(2)
M(−M) in the general case, but I expect from the time-independent

situation that correction terms should be at most order-unity. Further, I strongly suspect

(but haven’t proved) that terms with even powers of ω̇z will be imaginary while terms with

odd powers will be real, and any real terms will be proportional to M because they physi-

cally arise from the splitting between initial and final levels. For a static perturbation, we

see exactly this behavior by expanding [exp(iωnit) − 1]/(ωnit). From here on, I drop the

terms involving ω̇z because the M -odd part, due to gradients of Bz, is rather small.

Finally, we will compute (α∗
P̃M

t)(αP̃ (−M)t) directly. Here, there are no “cross-terms”

that scale like ~E⊥ · ~B⊥ because simultaneous M -reversal and complex conjugation in the

matrix elements αP̃M looks like mapping E → −E but B → B. Therefore, the transition

amplitudes for “perturbed by B, then E” and “perturbed by E , then B” exactly cancel. We

also see that perturbations due to E2
x and E2

y appear with opposite sign, essentially because

of the relative factor of i appearing between vx and vy in the spherical basis expansion.

Putting everything together, we obtain
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c
(2)
M(−M) = − iÑ

12

µ2
‖(B2

x − B2
y) −D2

‖(E2
x − E2

y )

D‖|E| t− MÑ
6

µ2
‖BxBy −D2

‖ExEy
D‖|E| t. (D.19)

Although this has a rather odd form, recall that the perturbation we assumed is not

rotationally symmetric about the z-axis, so we can’t expect rotational symmetry in the

expression for the perturbed state amplitude.

With the result finally in hand, we can note that the real part is M -odd and the imagi-

nary part is M -even, so this perturbation only contributes to the measurement through the

term φmeas. ∼ (c+ − c−)µ and its signature in the measured phase is proportional to the

ellipticity of the preparation lasers. (Once again, see Sec. 4.3 for the relevant notation.)

Based on these results, we expect that the second-order couplings between opposite-M

states, due to time-dependent electric and magnetic fields, will not contribute to an EDM

systematic. Therefore, in the next section, where we consider perturbations coupling the

EDM spin precession state to the J = 2 manifold, I only compute the direct second-order

energy shift c(2)
MM .

Perturbations via J = 2

The (possibly M -dependent) energy shifts mediated by the J = 2 manifold take the same

form that we found previously,

c
(2)
MM = − i

12

∑

M2

|αM2M t|2
Brot

t, (D.20)

where I’m ignoring the higher-order contributions involving time-dependent z-aligned fields

at the precision of interest, and I have replaced the detuning −ÑD‖|E|/2 with −4Brot, and

we must now sum over M2 = 0, 2M in the J = 2 manifold instead of summing over P̃

states. Without proceeding further, we can simply note that there is nowhere for a factor

of Ñ to appear, so perturbations that drive J = 1 → J = 2 → J = 1 cannot generate a

systematic error.

However, perturbations due to Stark mixing between J = 1 and J = 2, followed by tran-
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sitions within the J = 2 manifold and finally followed by projecting back into J = 1, do have

the potential to generate Ñ -odd terms. The Stark mixing into and out of J = 2 generates a

suppression factor of (1
2

√

3
5 ×D‖E0)2/(4Brot)

2 = 3
20

D2
‖
|E|2

(4Brot)2 ∼ 1
102 (100 MHz

10 GHz )2 ∼ 10−6. We see

that the numerical prefactor is sufficiently small that the order-of-magnitude estimate for

c(2) ∼ 10−7 was far too large, and the AC Stark/Zeeman perturbations mediated by J = 2

can be neglected after all.

In conclusion, time-dependent E and B fields are unable to generate systematic errors at

the ACME II sensitivity via any known second-order perturbations to the |H,J = 1,M =

±1〉 states. These calculations were inspired by the observed ∂B/∂z systematic error in

ACME II, before it was fully understood, and the approach used here may be a useful guide

to other systematic error models considered in future measurements.
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Appendix E

Nonimaging molecular focusing

We’ve considered the possibility that a “lens” is not the optimal way to focus the molecular

source. The domain of non-imaging optics deals with the design and construction of optical

elements that most efficiently map rays from some input region of phase-space to a more

convenient “target” region of phase-space. For example, it may be useful to compress the

largest number of input rays into the smallest spatial area on some photodetector. In such

an application, it is irrelevant whether the rays form an image of their source when they

are incident on the detector.

In fact, this is exactly the situation we are in with respect to the molecular “lens”: it does

not matter whether we image the source onto the area where the molecules are detected.

For this reason, I considered possible molecular focusing designs that would mimic optical

elements used in the field of non-imaging optics. Ultimately, these are not useful because

the number of molecules we can direct into the interaction region is limited by the focusing

potential that is technically feasible rather than by inefficiently filling the detector area with

molecule trajectories (or “rays”).

Analog to the “compound parabolic concentrator,” or Winston cone

The conservation of etendue, considered in Sec. 6.1.2, limits the range of molecular diver-

gence angles that can be redirected into the detection area in the interaction region. As

a simple example, consider a round source with maximum divergence angle α ≪ 1 and

area S. An ideal optical element that reduces the divergence to α′ < α must, necessarily,
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Figure E.1: Crude schematic of the geometry for a “generalized Winston cone” that maps
rays between two distant regions

increase the area by a factor α/α′. The book Nonimaging Optics by Roland Winston is a

very useful reference for problems of this type [204].

Following the strategies in [204], it is easiest to construct a nonimaging optical element

with a surface reflector, which could be approximated by a very high-order electric or mag-

netic field multipole configuration. We can regard our “focusing” problem in the following

simple terms: we have an optical source (for now, in 2D) along the vertical line segment AA′

and a desired target along the vertical line segment BB′. The boundaries of our optical

element are the curved segments PQ and P ′Q′. There is a fixed horizontal distance L1

between the source and optic, and a distance L2 between the optic and target, based on

practical constraints. The maximal divergence angle we’ll consider from the source is θc.

Let the source (along AA′) have radius r1 and the target (along BB′) have radius r2. We

can design a reasonably efficient concentrator for rays originating in AA′ to be directed to

the target BB′. See Fig. E.1 for a crude representation of the geometry. The concentrator

has two segments. The first is a parabolic curve PS, tilted at an angle θc with respect to the

horizontal axis so that a ray emitted anywhere along the line AA′ at the critical (maximum)

design angle θc will intersect the parabola and be reflected to the focal point, placed at B′.

Likewise, the other side of the concentrator has a parabolic segment P ′S′ with focus at B.

Any shallower ray, emitted with θ < θc, will be reflected to a point within the line segment

BB′ rather than the edges.
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The second segment, SQ, is an ellipse with foci at A′ and B′. (The other side, of course,

has a segment S′Q′ with foci at A and B.) This ensures that any ray from the line segment

AA′ that intersects the curve S′Q′ will be reflected to some point on the line segment BB′.

Finally, the endpoint Q′ is set to lie along the line AB′. Therefore, any ray emitted from AA′

at an angle up to θc must be reflected once along the path P ′S′Q′ or PSQ and pass through

BB′. However, if θc is made too large, then some rays reflected from PSQ will intersect

another part of PSQ before reaching BB′, and be rejected back past the source (perhaps

after many bounces). Indeed, rays like this must exist in order for etendue conservation to

hold in the limit θc → π
2 .

The exact geometry can be expressed in terms of Cartesian coordinates through the

following system of equations. I regard the “inputs” to be r1, r2, L1, L2, and θc. I assume

that primed coordinates are for y > 0 and unprimed coordinates are for y < 0, and xA =

xA′ = 0 defines the origin. A 3D concentrator is obtained by rotating the 2D geometry

about the y = 0 line. The defining equations will be elaborated upon below.

1. p = 1
2 (r2 sin θc + yP ′ sin θc + xB cos θc − L1 cos θc

+
√

x2
B + r2

2 + y2
P ′ − 2xBL1 + 2r2yP ′

)

2. k = xB cos θc + r2 sin θc − p

3. h = −xB sin θc + r2 cos θc

4. yparab(x) =
√

2 sec2 θc
√

p(p− k + 2x cos θc − (p+ k) cos(2θc) + h sin(2θc)

−x tan θc − sec θc(h+ 2p tan θc)

5. yP ′ = r1 + L1 tan θc

6. xS′ = 1
4

[

2 cot θc(r1 + p csc θc) − 2(h csc θc + p sec θc)

+
√

2 cot2 θc
√

p sec6 θc(p− k + (p+ k) cos(4θc) + 4r1 cos2 θc sin θc − h sin(4θc)

]

7.
√

x2 + (yellipse(x) − r1)2 +
√

(x− xB)2 + (yellipse − r2)2

=
√

x2
S′ − (yparab(xS′) − r1)2 +

√

(xS′ − xB)2 + (yparab(xS′) − r2)2

8. yellipse(xB − L2) = −r1 + r1+r2
xB

(xB − L2)

316



Lines 1-3 give shorthand expressions for the parameters of the parabola. The function

yparab(x), given in line 4, gives the functional form of the parabolic segment defining the

reflector from x = xP ′ to x = xS′ . It is rather complicated only because the parabola’s axis

is misaligned from the horizontal axis. Line 5 defines the opening radius of the parabolic

section (used implicitly in previous lines), defined so that a ray at angle θc from A′ intersects

P ′. Line 6 solves for the endpoint of the parabola along the x-axis, defined so that a ray

at angle θc from A intersects S′. Line 7 gives an implicit equation for yellipse(x), defining

the reflector along curve S′Q′. (This equation actually has an analytic solution, but it’s

extremely messy.) Line 8 implicitly defines xB, which in turn gives xQ = xB − L2. These

results are obtained by direct geometric analysis, and can be numerically solved together

in simulations to construct the reflector geometry.

I do not claim that this reflector is optimal in the sense of allowing the source rays to be

directed into a minimal area, but I believe it should more efficiently concentrate rays than

an imaging element. However, since maximal spatial compression between the source and

target is of limited benefit for molecular focusing in ACME (given the more-limiting finite

potential depth), I have not made a thorough study of the performance of this non-imaging

element for realistic experimental geometries.

Design for multiple reflections

One of the principles of the “Winston cone” and analogous devices is that each ray from the

input bundle experiences at most one reflection before arriving at the target bundle. This

is useful for optimal concentration, but it assumes a perfectly reflective surface is available.

In our case, the interaction energy is limited so that the projection of the molecule velocity

along the surface normal vector, at the point of reflection, must be less than a critical velocity

vc such that 1
2mv

2
c = Umax. For a fixed forward velocity, let the critical angle be θc = vc/vx.

If a trajectory has angle θ with respect to the horizontal, then the reflector surface must

be angled so that θ − θsurf ≤ θc or the molecule will “break through” the potential barrier.

Let the surface be given by a function R(x) and let there be a point source at distance

l from the opening of the reflector. Suppose that every trajectory from the point source,

parametrized by θ, hits the reflector with the critical condition θ − θsurf = θc. Therefore,
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dR
dx = Θ(x) − θc, where Θ(x) is a function giving the angle of the trajectory that intersects

the reflector at position x. By definition, we must have R(x) = (l + x)Θ(x). Substituting

into the differential equation for R(x), we find

dR

dx
=
R(x)

l + x
− θc. (E.1)

This can be solved analytically. If the maximum accepted angle is θ0 (intersecting the

reflector at its opening aperture), then we find

R(x) = (l + x)

(

θ0 − θc ln

(

1 +
x

l

))

. (E.2)

Unlike the Winston cone, this construction does not guarantee any “good” behavior of

the output ray bundle, nor does it guarantee a single reflection per ray. However, this could

conceivably solve a practical problem with the reflector design: for example, if a source

is at minimum 25 cm from a harmonic lens and we want to admit angles up to 0.05 rad,

then the lens aperture must be greater than 1 cm in radius. In practice, we need a factor

of ∼ 2 margin because a molecule cannot be turned around if it enters the lens already

at the wall; therefore, let R ∼ 2 cm. To turn around such a trajectory, it must travel a

transverse distance comparable to the lens radius, corresponding to a longitudinal distance

of ∼ 2 cm/0.05 ∼ 40 cm. (These estimates are actually quite close to optimal lens length

values for the ACME geometry.) In this distance, at most ∼ Umax energy can be removed

from the transverse velocity. On the other hand, a molecule that repeatedly “skips” along

a slanted wall could have energy Umax removed many times in a short distance because the

molecule need not cross to the opposite end of the lens.

Unfortunately, I’ve found from direct simulation that this multiple-reflection design is

only comparably as effective as a harmonic potential. We can understand this heuristically:

in order to have two useful collisions between a molecule and the wall, we’d want the initial

admitted divergence to be at least θ0 = 2θc. We’ll want the reflector to be at least as long

as required to “flatten out,” where R′(x) = 0, which occurs for L ≈ 1.7 l for the given value

of θ0. Here, the reflector will turn around trajectories with θ = θc. Therefore, with l = 25

cm, we’ll have a 43 cm long reflector that can (energetically speaking) “double-bounce” a
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single divergence class, representing negligible improvement over an ordinary curved lens.

Further, it is better to have a slightly converging reflector at the end, increasing the length

further, and the length needed for the reflector to flatten out grows exponentially in the

ratio θ0/θc.

Therefore, a useful multiple-reflection design will be impractically long. We cannot

make a shorter reflector with a similar design principle because the geometry considered

here already enforces a maximally hard turn inward. Decreasing the radius of curvature

anywhere, to reduce the reflector length, will cause most molecules to be rejected (i.e., either

reflected back toward the source or “break through” the reflecting potential) on their first

“bounce.”

Velocity point source

As something of an aside, it is also interesting to understand how we could focus a “velocity

point source.” To this end, given an extended source −ymax < y < +ymax with a single

divergence angle θ, we wish to find a class of potentials U(x, y) ensuring that all molecules

turn around at the same position, vy(x = L, y0) = 0. Here, y0 indexes the initial position

of the trajectory in the source. We know that a position-independent force (e.g., gravity

near earth’s surface) achieves this, since then the momentum transfer along y is identical

for all molecules over their trajectories. As we saw in the case of a spatial point source,

this argument holds even if the force varies with the x-position of the molecules. Thus a

potential U(x, y) = Umaxy/R(x) collimates a “velocity point source,” where R(x) is any

function of x with units of length.

In 3 dimensions, a harmonic potential is separable, r
2

= y2+z2, so a point source can still

be collimated perfectly. However, a linear potential is not separable, r =
√

y2 + z2 6= y+ z,

and the reasoning of this section cannot be generalized exactly. (In particular, it is valid

only for molecules with vanishing azimuthal velocity, where the centrifugal barrier of the

potential in cylindrical coordinates vanishes.) Nevertheless, I expect that a linear potential

could be more favorable if the source distribution were extremely extended in space (relative

to other length scales) and it were paramount to redirect a narrow range of velocity classes.

In ACME, a harmonic potential appears to be more advantageous than a linear potential,
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consistent with the fact that our source is reasonably well-concentrated in space (3 mm

radius) but not in velocity (∼ 45◦ FWHM divergence).
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Appendix F

Photodetector excess noise factors

We discussed in Sec. 6.3 that the signal-to-noise ratio of a phase measurement is σφ ∝

(ǫdet./F )−1/2, where ǫdet. is the detector efficiency and F is the excess noise factor. We

will see in this appendix how the excess noise factor comes about and why it varies among

different detection technologies.

The uncertainty in the phase measurement can ultimately be traced to statistical noise

in the detected number of photoelectrons, which are detected at some rate r. We can

understand the noise associated with the detection in terms of the power spectral noise

density of the photon detection process. This is elaborated upon below.

Power spectral noise density

The power spectral density of a signal x(t) is

P ≡ lim
T→∞

1

T

∫ T

0
dt x(t)2, (F.1)

in analogy to the fact that the physical power associated with a signal (e.g., a voltage

V (t)) is typically proportional to the average of the square of the signal. It is useful to

consider the power associated with the signal component only at angular frequency ω. Let

the finite-window Fourier transform be

x̂T (ω) ≡
∫ T

0
dt x(t)e−iωt, (F.2)
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where I’m assuming the signal obeys the constraint that x(t < 0) = 0. Then the power

contributed within a band ω to ω + δω is

P (ω, ω + δω) = lim
T→∞

1

T
|x̂T (ω)|2δω. (F.3)

We define the power spectral density at frequency ω to be P (ω) = limT→∞ 1
T |x̂T (ω)|2.

Consider the idealized case that a signal x(t) measures a photodetector current and has the

form of a “spike train,” where discrete photon arrivals are observed as delta functions of

current. In particular, for photon arrivals at times t1, t2, · · · , tn, the signal will be x(t) =

∑n
i=1 δ(ti). If the photon arrival times are generated from a Poisson process of photon

arrivals with characteristic arrival rate r, then for ω > 0, one can show that[264, Sec. 5.2]

P (ω) = r. Thus the power spectral density is independent of frequency, and the noise

arising from the Poisson process is “white.”

The case of ω = 0 requires additional care (which I will not derive here in detail),

because there is a contribution to P (ω = 0) from the time-averaged signal, r, that leads to

a delta-function in the power spectrum, P (ω) = 2πr2 × δ(ω) + r. We therefore define the

power spectral noise density to be the power spectrum of the actual signal x(t), which is

generated by a stochastic process, minus the expected (non-stochastic) signal 〈x(t)〉 = r.

Thus the delta-function contribution to the power spectrum is removed and the power-

spectral noise density turns out to be only Pnoise(0) = r. Therefore, for a Poisson process,

the power spectral noise density is Pnoise(ω) = r for all ω.

Introduction to the excess noise factor

The power spectral noise density gives an expression for the frequency-dependent noise

associated with the photodetector signal x(t), considered above as a “spike train,” or a

sequence of “clicks” denoting photon detection events. Consider now an ideal photodetector

with gain G detecting photons whose arrival is governed by a Poisson process so that

the measured current is a spike train, I(t) = G × ∑n
i=1 qeδ(ti), where qe is the electron

charge. Then the power spectral noise density of the current measurement is δI2(|ω|) =

2qeI0G
2, where I0 is the average (DC) current generated directly by photoelectrons, before
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amplification by the internal gain G. Here, the factor of 2 appears because we conventionally

sum the power spectral noise density over positive and negative Fourier components.

When the gain is not a fixed constant but rather is governed by a statistical distribution

with mean 〈G〉 and variance ∆G2, then the power spectral noise density of the current

becomes δI2 = 2qeI0〈G〉2 × F , where F = 1 + Var(G)/〈G〉2 is the excess noise factor (see

[265] for details). This factor is derived below for several photodetector gain mechanisms.

Note that here, I0 is the actual photoelectron current, and already includes the effect of the

photodetection efficiency ǫ ≤ 1. Formally, this is valid because the detected and undetected

photons can be thought of as being generated by completely independent Poisson processes.

This is known as thinning or splitting the original Poisson process [266].

To compute the excess noise factor F , we must have a model of the stochastic process

governing G for any particular detector. In practice, the excess noise factor can be measured

by observing the distribution of currents generated by single-photon detection events. For

the Hamamatsu R7600U-300 detectors used in ACME II, we have measured excess noise

factors of 1.2 − 1.3 as described in Sec. 3.2.1.

Photomultiplier tubes

In a photomultiplier tube, a photoelectron is generated in an anode, accelerates across

a potential, and induces secondary emission of electrons upon colliding with a cathode.

Typically, there are about 5 electrons generated in each secondary emission and up to

9 dynode (anode-cathode) stages, for a gain of order 59 ∼ 106. Generally, the average

number of output electrons in an m-stage photomultiplier tube is 〈G〉 = Πm
k=1〈gk〉, where

〈gk〉 is the average gain of the k-th stage. For purposes of illustration, note that the

fluctuations in G are typically dominated by the fluctuations in the gain of the first stage

since the variance in subsequent stages is suppressed by the law of large numbers (many

electrons independently undergo a gain at the same stage). Modelling all stages subsequent

to the first as having perfectly-defined gain, we compute〈∆G2〉 = 〈∆g2
1〉(G/〈g1〉)2 and

F = 1 + 〈∆G2〉/G2 = 1 + 〈∆g2
1〉/〈g1〉2.

The secondary emission is frequently modelled as a Poisson process, so that 〈∆g2
1〉 = 〈g1〉

and F = 1 + 1/〈g1〉. Taking a reasonable value of g1 ≈ 5, we infer F = 1.2. For a
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photomultiplier with fixed gain at all stages, 〈gi〉 = 〈g〉, the result is only slightly larger, as

expected: F = 1 + (1 − 〈g〉−m)/(〈g〉 − 1) ≈ 1 + 1/(〈g〉 − 1). See [176] for details.

Therefore, the excess noise factor for photomultiplier tubes is typically in the range

1.2-1.4, consistent with what we’ve observed for the PMTs used in ACME II.

Avalanche photodiodes

An avalanche photodiode (APD) operated in current mode amplifies photoelectrons by

accelerating them through a p-n junction operated at reverse bias in a solid-state material

such as silicon. Impact ionization generates electron-hole pairs, and the generated electrons

continue to accelerate within the material, leading to further amplification. Hole ionization

also occurs, typically at a rate about k ∼ 1 − 10% that of electron ionization [176]. I will

neglect hole ionization in the simple discussion below. However, it’s important to note

that when an APD is operated at large gain, the hole ionization process can contribute

significantly to the excess noise factor.

Following [267], we will model the ionization process as follows: each photoelectron is

exponentially amplified as it traverses the gain material, so 〈G(x)〉 = eαx, where x represents

the spatial coordinate of the photoelectron’s path through the gain medium. For a gain

region of length L, the expected gain is then 〈G〉 ≡ 〈G(L)〉 = eαL. Within a small region of

length dx centered on x, the current generation is subject to shot noise, contributing to the

spectral noise density P by an amount 〈dP (x)〉 = 2qe〈G(L−x)〉2〈I(x)〉αdx, where 〈I(x)〉 is

the total current expected at x, and 〈G(L−x)〉 is the remaining amplification it is expected

to undergo. Note that 〈I(x)〉 ∝ 〈G(x)〉, so we can write 〈I(x)〉 = I0e
αx. Plugging this in to

the expression for 〈dP 〉 and integrating, we find

〈P (L)〉 = 2qeαI0e
2αL

∫ L

0
dx e−αx = 2qeI0〈G〉2(1 − 1/〈G〉). (F.4)

Note that this is only the noise associated with amplification. Adding this contribution

to the shot noise of the photoelectron generation process itself, we see that F = 2 − 1/〈G〉.

This formula applies to the special case k = 0 (i.e., hole ionization is ignored). Similar

considerations with k 6= 0 lead to additional terms k(〈G〉 − 2 + 1/〈G〉). In any case,
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ideal operation of an avalanche photodiode typically gives F ≈ 2. Thus the benefit of the

remarkably high detection efficiency (ǫ ≈ 0.8) is significantly mitigated by the large excess

noise factor.

Silicon photomultipliers

A silicon photomultiplier (SiPM) is an array of small (∼ 50µm) avalanche photodiode cells

[214]. Each cell can be modelled as a capacitor with capacitance C and stored charge Q.

This charge can be readily discharged in the presence of a sufficiently large electric field,

which arises from a voltage applied across the cell. The critical voltage required to allow

electric discharge is the “breakdown voltage” of the cell, and silicon photomultipliers are

operated with an applied voltage that exceeds this breakdown voltage by a margin known as

the “overvoltage.” Under conditions of a modest overvoltage (∼ 5 V), when a photoelectron

is generated, it triggers an avalanche, causing all of the charge stored in the cell to flow as

current. The result is a current spike of highly predictable amplitude. The gain is Q/qe,

typically of order 106. Although there is a dead time τdead associated with the recharging

of each cell, consecutive photons are highly unlikely to hit the same microcell, and the

maximum counting rate is of order Ncells/τdead, which can be of order 100 GHz. Here, Ncells

is the number of micro-cells in a device. The current output of all cells is summed.

The gain during normal operation is extremely stable (F ≈ 1) because very uniform

voltages can be applied both across distinct cells and from avalanche to avalanche for a

given cell. The total charge Q = C × V that flows in a given avalanche is therefore fixed to

high precision.

However, when operated at high over-voltages, an avalanche in one cell can trigger an

avalanche in an adjacent cell with probability ǫc, effectively doubling the gain at random

intervals. This interaction between adjacent cells is known as cross-talk. Chains of cross-talk

events can also occur, but since ǫc ∼ 0.1 typically, I will neglect these chain effects (which

enter first at order ǫ2c). Another noise mechanism is afterpulsing, where a charge carrier

gets “stuck” during the avalanche and is released soon after the cell recharges. The effect of

such an event is, once again, to double the gain with probability ǫap. Usually, ǫap < ǫc, but

we can include both effects to leading order by considering the small probability ǫ = ǫap +ǫc
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to double the gain of the detector.

Finding the excess noise factor due to ǫ, to leading order, is straightforward. Normalizing

the gain to the ordinary value of the gain G0, we compute

〈G〉
G0

= 1 × (1 − ǫ) + 2 × ǫ = 1 + ǫ. (F.5)

The variance, in units of G0, is the same as the variance in a Bernoulli process with

“success” probability ǫ, namely

∆G2

G2
0

= ǫ(1 − ǫ) ≈ ǫ, (F.6)

where I’ve dropped the term of order ǫ2 because higher-order effects have already been

neglected in the model. We then find that F = 1 + ǫ+ O(ǫ2) ≈ 1.1 in a typical case. This

is in good agreement with the literature on SiPM excess noise factors.

We might wonder how the excess noise factor is affected if we create an array of silicon

photomultipliers, some of which have different breakdown voltages than others. For exam-

ple, suppose we have a 2 × 1 array of SensL J-series devices. These are specified to have a

range of breakdown voltages spanning ±0.25 V, which translates directly to a difference in

over-voltage if sensors are not individually powered. For a typical device, the recommended

operating overvoltage is 5 V and the device gain is very linear in the overvoltage [210].

We can therefore assume that half of the photons incident on this array experience gain

(5.25/5)G0 = 1.05G0 and the other half experience gain (4.75/5)G0 = 0.95G0. The vari-

ance in gain of this process is given by 〈∆G2〉/G2
0 = (1/2)(0.052) + (1/2)(0.052) = 0.0025.

Ordinary variation in the breakdown voltage of units should therefore contribute negligibly

to the excess noise in an array of SiPMs, and in particular is dominated by the intrinsic

excess noise in each individual SiPM device due to cross-talk and after-pulsing.
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Appendix G

Example header

Here, I show part of an example header, mentioned in Sec. 3.3. The quantities recorded

here are used to identify the experimental configuration, any amplified imperfections used

to search for systematic errors, and to search for possible correlations in the data set with

auxiliary parameters (e.g., temperatures, magnetic fields in the room, etc.). As mentioned

previously, there are 6 categories for each trace: (0) Trace #, Start time, End time; (1)

Switch times; (2) DAQ properties; (3) Switch states; (4) Instrument setpoints; (5) Logging

measurements. Below, I show the part of a header used only to record data for Run 281,

Sequence 9, Block 8, Trace 34. As seen in the section for “switch states,” during this block

there was an applied non-reversing electric field, Enr, used to measure a possible systematic

error during the EDM data set.

header 0281.0009.0008.0034.0

Start Time 2018 -03 -30 T13 :00:12.262

End Time 2018 -03 -30 T13 :00:13.004

== switch times ==

total switch time 200 ms

E- fields 200 ms

B- fields 0 ms

Freqs/ Powers 100 ms

Waveplates 0 ms

== DAQ Properties ==

Human Operator EDM Student

dt 62.5000000000 E -9 s

Records per Trace 25

DAQ Voltage Range 2.000000 V

Number of Channels 8

Conversion Factor Individual 1.6479743648 E -5 V

Conversion Factor Summed 2.0599679560 E -6 V
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Acquisition Rate 5.000000 E+1 Hz

Polarization Switching Frequency 2.000000 E+2 kHz

Polarization Switching Deadtime 8.000000E -1 s

Polarization Switching Extra XY Delay 1.000000E -2 s

Polarization Switching XY Swapped 0.000000 E+0

Scope Trigger Offset 4.000000 E+0 s

Current Sequence Code ID 2355

Ablation Mirror Position X 6.514 arb

Ablation Mirror Position Y 5.2449 arb

== switch states ==

E_mag 140 V/cm

690 _STIRAP_Detuning 0.4 MHz

dBz / dz_nr 0.25 mA

STIRAP_1090_half_wave_angle 58.5 degrees

P_NE 0 %

Enr 0.3 V/cm

Bz_rev 0.5 mA

R +1

L -1

P -1

B +1

theta -1

E -1

N -1

== instrument setpoints ==

Bx 0.000000

By 0.000000

Bz 0.500000

dBx /dx 0.000000

dBy /dx 0.000000

dBy /dy 0.000000

dBy /dz 0.000000

dBz /dx 0.000000

dBz /dz 0.250000

Bleads 1.000000

field plate east voltage 314.325000

field plate west voltage -314.325000

guard ring east voltage 314.325000

guard ring west voltage -314.325000

e- field leads -1.000000

electric field 140.000000

probe half wave angle -0.500000

prep half wave angle 11.800000

prep quarter wave angle 16.000000

STIRAP 1090 half wave angle 58.500000

N -1.000000

Pump AOM Frequency 0.000000

P -1.000000

Pump RF Voltage 0.500000

Probe X RF Voltage 0.550000

Probe Y RF Voltage 0.540000

TiSapph Detuning Upper (N -) 0.000000

TiSapph Detuning Lower (N+) 0.000000
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690 STIRAP Detuning 0.400000

1090 STIRAP Detuning 0.000000

All West East 0.000000

== logging measurements ==

TiSapph Beat Note Frequency 2018 -03 -30 T13 :00:12.394 7.790430 E+8 Hz

STIRAP lambda /2 2018 -03 -30 T13 :00:12.400 5.850000 E+1 degrees

Pump lambda /2 kz -1 2018 -03 -30 T13 :00:12.400 1.000200 E+0 degrees

Probe lambda /2 2018 -03 -30 T13 :00:12.400 -4.996000 E-1 degrees

Pump lambda /2 2018 -03 -30 T13 :00:12.400 1.179850 E+1 degrees

Probe lambda /2 kz -1 2018 -03 -30 T13 :00:12.400 -2.700000 E -3 degrees

STIRAP Linear Stage Position 2018 -03 -30 T13 :00:12.659 1.804011 E+1 mm

Beam Box Cell Top Temperature 2018 -03 -30 T13 :00:12.641 1.701600 E+1 K

Beam Box Pressure 2018 -03 -30 T13 :00:12.690 3.160000E -7 Torr

Stem Pressure 2018 -03 -30 T13 :00:12.634 2.460000E -7 Torr

Neon Buffer Gas Flow Rate 2018 -03 -30 T13 :00:12.619 3.990000 E+1 sccm

Dump Region Pressure 2018 -03 -30 T13 :00:12.666 3.300000E -7 Torr

Beam Box Snorkle Temperature 2018 -03 -30 T13 :00:12.670 1.728700 E+1 K

TiSapph Beat Note Frequency 2018 -03 -30 T13 :00:12.694 7.789679 E+8 Hz

East Field Plate Voltage 2018 -03 -30 T13 :00:12.746 -3.143700 E+2 V

West Field Plate Voltage 2018 -03 -30 T13 :00:12.742 3.143062 E+2 V

Field Plate Voltage Difference 2018 -03 -30 T13 :00:12.744 -6.286762 E+2 V

Field Plate Voltage Offset 2018 -03 -30 T13 :00:12.744 -3.192308 E -2 V

Leads Configuration 2018 -03 -30 T13 :00:12.744 1.000000 E+0 state

STIRAP lambda /2 2018 -03 -30 T13 :00:12.800 5.850000 E+1 degrees

Pump lambda /2 kz -1 2018 -03 -30 T13 :00:12.800 1.000200 E+0 degrees

Probe lambda /2 2018 -03 -30 T13 :00:12.800 -4.996000 E-1 degrees

Pump lambda /2 2018 -03 -30 T13 :00:12.800 1.179850 E+1 degrees

Probe lambda /2 kz -1 2018 -03 -30 T13 :00:12.800 -2.700000 E -3 degrees

X North Coil Current 2018 -03 -30 T13 :00:12.608 4.835469E -3 mA

X South Coil Current 2018 -03 -30 T13 :00:12.608 1.088947E -3 mA

Y +++ Coil Current 2018 -03 -30 T13 :00:12.608 6.197840E -3 mA

Y ++- Coil Current 2018 -03 -30 T13 :00:12.608 -2.734241 E -4 mA

Y +-+ Coil Current 2018 -03 -30 T13 :00:12.608 6.197840E -3 mA

Y +-- Coil Current 2018 -03 -30 T13 :00:12.608 1.429540E -3 mA

Y -++ Coil Current 2018 -03 -30 T13 :00:12.608 4.077617E -4 mA

Y -+- Coil Current 2018 -03 -30 T13 :00:12.608 5.857247E -3 mA

Y --+ Coil Current 2018 -03 -30 T13 :00:12.608 -1.295203 E -3 mA

Y --- Coil Current 2018 -03 -30 T13 :00:12.608 -1.295203 E -3 mA

Z North Coil Current 2018 -03 -30 T13 :00:12.608 2.560644 E+0 mA

Z South Coil Current 2018 -03 -30 T13 :00:12.608 2.530331 E+0 mA

Z East Coil Current 2018 -03 -30 T13 :00:12.608 2.541494E -1 mA

Z West Coil Current 2018 -03 -30 T13 :00:12.608 7.418784E -1 mA

TiSapph Beat Note Frequency 2018 -03 -30 T13 :00:12.994 7.790371 E+8 Hz

Integrated Fluorescence Signal 2018 -03 -30 T13 :00:12.263 7.9834792368 E -4 arb

G14 Room Temperature South 2018 -03 -30 T13 :00:12.290 1.8333689360 E+1 C

G14 Room Humidity South 2018 -03 -30 T13 :00:12.323 5.2738645000 E+1 %

GMR1x 2018 -03 -30 T13 :00:12.350 1.2099504471 E+1 mG

GMR1y 2018 -03 -30 T13 :00:12.350 2.3368239403 E+1 mG

GMR1z 2018 -03 -30 T13 :00:12.350 2.0061016083 E+1 mG

GMR2x 2018 -03 -30 T13 :00:12.350 -2.7768015862E+1 mG

GMR2y 2018 -03 -30 T13 :00:12.350 -3.5614728928E+1 mG

GMR2z 2018 -03 -30 T13 :00:12.350 -2.0369708538E+2 mG

GMR3x 2018 -03 -30 T13 :00:12.350 2.2541224957 E+2 mG
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GMR3y 2018 -03 -30 T13 :00:12.350 1.0328531265 E+1 mG

GMR3z 2018 -03 -30 T13 :00:12.350 1.1771774292 E+2 mG

GMR4x 2018 -03 -30 T13 :00:12.350 -3.4404158592E+1 mG

GMR4y 2018 -03 -30 T13 :00:12.350 2.3727536201 E+1 mG

GMR4z 2018 -03 -30 T13 :00:12.350 7.8442096710 E+0 mG

G14 Room Pressure 2018 -03 -30 T13 :00:12.360 7.6183519424 E+2 Torr

Beam Box Skimmer Temperature 2018 -03 -30 T13 :00:12.397 0.0000000000 E+0 K

J162 Room Temperature 2018 -03 -30 T13 :00:12.400 1.9600000000 E+1 C

J162 Room Humidity 2018 -03 -30 T13 :00:12.400 4.7800000000 E+1 %

Beam Box Zorb Temperature 2018 -03 -30 T13 :00:12.433 6.2839026624 E+0 K

Probe Laser Power 2018 -03 -30 T13 :00:12.433 8.4751041758 E+1 mW

Cleanup Laser Power 2018 -03 -30 T13 :00:12.433 6.4172685337 E+2 mW

Beam Box 4K Shield Top Temperature 2018 -03 -30 T13 :00:12.467 9.5717745872 E+0 K

Integrated Fluorescence Signal 2018 -03 -30 T13 :00:12.477 7.9834792368 E -4 arb

Ion Sweeper Voltage 2018 -03 -30 T13 :00:12.503 -5.0438117853E+2 V

1090 A Lock Status 2018 -03 -30 T13 :00:12.527 1.0000000000 E+0

703 A Lock Status 2018 -03 -30 T13 :00:12.527 1.0000000000 E+0

690 A Lock Status 2018 -03 -30 T13 :00:12.527 1.0000000000 E+0

North Cancellation Current 2018 -03 -30 T13 :00:12.540 1.4158755000 E+1 A

South Cancellation Current 2018 -03 -30 T13 :00:12.577 1.5928475000 E+1 A

690 STIRAP AOM Frequency 2018 -03 -30 T13 :00:12.577 2.3660000000 E+2 Hz

1090 STIRAP AOM Frequency 2018 -03 -30 T13 :00:12.577 9.3300000000 E+1 Hz

G14 Room Temperature North 2018 -03 -30 T13 :00:12.660 1.9400000000 E+1 C

G14 Room Humidity North 2018 -03 -30 T13 :00:12.660 5.4800000000 E+1 %

Integrated Fluorescence Signal 2018 -03 -30 T13 :00:12.670 7.9834792368 E -4 arb

690 Daredevil Error Signal Width 2018 -03 -30 T13 :00:12.703 1.0353406819 E+0 MHz

690 Gollum Error Signal Width 2018 -03 -30 T13 :00:12.703 1.3729084362 E+0 MHz

1064 Cavity 1 Error Signal Width 2018 -03 -30 T13 :00:12.703 1.1624089512 E -1 MHz

1064 Cavity 2 Error Signal Width 2018 -03 -30 T13 :00:12.703 2.7063207204 E -1 MHz

Probe Laser Power 2018 -03 -30 T13 :00:12.737 8.4751041758 E+1 mW

Cleanup Laser Power 2018 -03 -30 T13 :00:12.737 6.4172685337 E+2 mW

GMR1x 2018 -03 -30 T13 :00:12.797 1.3064861298 E+1 mG

GMR1y 2018 -03 -30 T13 :00:12.797 2.3067593575 E+1 mG

GMR1z 2018 -03 -30 T13 :00:12.797 1.9447445869 E+1 mG

GMR2x 2018 -03 -30 T13 :00:12.797 -2.9074192047E+1 mG

GMR2y 2018 -03 -30 T13 :00:12.797 -3.5710334778E+1 mG

GMR2z 2018 -03 -30 T13 :00:12.797 -2.0535492897E+2 mG

GMR3x 2018 -03 -30 T13 :00:12.797 2.2578632832 E+2 mG

GMR3y 2018 -03 -30 T13 :00:12.797 1.0239124298 E+1 mG

GMR3z 2018 -03 -30 T13 :00:12.797 1.1745524406 E+2 mG

GMR4x 2018 -03 -30 T13 :00:12.797 -3.5638093948E+1 mG

GMR4y 2018 -03 -30 T13 :00:12.797 2.3824334145 E+1 mG

GMR4z 2018 -03 -30 T13 :00:12.797 7.6076984406 E+0 mG

1090 A Lock Status 2018 -03 -30 T13 :00:12.830 1.0000000000 E+0

703 A Lock Status 2018 -03 -30 T13 :00:12.830 1.0000000000 E+0

690 A Lock Status 2018 -03 -30 T13 :00:12.830 1.0000000000 E+0

Pump room monitoring connection 2018 -03 -30 T13 :00:12.877 1.0000000000 E+0

G14 Room Temperature North 2018 -03 -30 T13 :00:12.883 1.9400000000 E+1 C

G14 Room Humidity North 2018 -03 -30 T13 :00:12.883 5.4800000000 E+1 %

J162 Room Temperature 2018 -03 -30 T13 :00:12.893 1.9600000000 E+1 C

J162 Room Humidity 2018 -03 -30 T13 :00:12.893 4.7800000000 E+1 %

G14 Room Pressure 2018 -03 -30 T13 :00:12.860 7.6183592288 E+2 Torr

Beam Box Skimmer Temperature 2018 -03 -30 T13 :00:12.897 0.0000000000 E+0 K
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Integrated Fluorescence Signal 2018 -03 -30 T13 :00:12.913 7.6140020434 E -4 arb

Beam Box Zorb Temperature 2018 -03 -30 T13 :00:12.933 6.2874638182 E+0 K

ULE A Pressure 2018 -03 -30 T13 :00:12.943 6.4000000000 E -8 Torr

ULE A Temperature 2018 -03 -30 T13 :00:12.943 2.7919638231 E+1 C

Beam Box 4K Shield Top Temperature 2018 -03 -30 T13 :00:12.967 9.4121258072 E+0 K

Ion Sweeper Voltage 2018 -03 -30 T13 :00:13.003 -5.0437617543E+2 V
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